Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Zhi Cao, Zhiyong Xiao, Yunhua Wu, Pan Yan, Yanxue Wu, Zongjun Ying, Zilei Chen, Suping Wu. A Submillimeter Iron Particle in Chang'e-6 Lunar Soil. Journal of Earth Science, 2025, 36(5): 2359-2364. doi: 10.1007/s12583-025-0183-8
Citation: Zhi Cao, Zhiyong Xiao, Yunhua Wu, Pan Yan, Yanxue Wu, Zongjun Ying, Zilei Chen, Suping Wu. A Submillimeter Iron Particle in Chang'e-6 Lunar Soil. Journal of Earth Science, 2025, 36(5): 2359-2364. doi: 10.1007/s12583-025-0183-8

A Submillimeter Iron Particle in Chang'e-6 Lunar Soil

doi: 10.1007/s12583-025-0183-8
More Information
  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S5; Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-025-0183-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Cui, Z. X., Yang, Q., Zhang, Y. Q., et al., 2024. A Sample of the Moon's Far Side Retrieved by Chang'e-6 Contains 2.83-Billion-Year-Old Basalt. Science, 386(6728): 1395–1399. https://doi.org/10.1126/science.adt1093
    Day, J. M. D., 2020. Metal Grains in Lunar Rocks as Indicators of Igneous and Impact Processes. Meteoritics & Planetary Science, 55(8): 1–15. https://doi.org/10.1111/maps.13544
    Duke, M. B., 1965. Metallic Iron in Basaltic Achondrites. Journal of Geophysical Research (1896-1977), 70(6): 1523–1527. https://doi.org/10.1029/jz070i006p01523
    Friel, J. J., Goldstein, J. I., 1977. Metallic Phases in the Luna 24 Soil Samples. Geophysical Research Letters, 4(10): 481–483. https://doi.org/10.1029/gl004i010p00481
    Fuchs, L. H., Olsen, E., 1973. Composition of Metal in Type Ⅲ Carbonaceous Chondrites and Its Relevance to the Source-Assignment of Lunar Metal. Earth and Planetary Science Letters, 18(3): 379–384. https://doi.org/10.1016/0012-821x(73)90093-9
    Goldstein, J. I., Axon, H. J., 1973. Composition, Structure, and Thermal History of Metallic Particles from 3 Apollo 16 Soils, 65701, 68501, and 63501. In: 4th Lunar and Planetary Science Conference, Texas, 4: 751–775
    Goldstein, J. I., Blau, P. J., 1973. Chemistry and Thermal History of Metal Particles in Luna 20 Soils. Geochimica et Cosmochimica Acta, 37(4): 847–855. https://doi.org/10.1016/0016-7037(73)90182-8
    Goldstein, J. I., Yakowitz, H., 1971. Metallic Inclusions and Metal Particles in the Apollo 12 Lunar Soil. Lunar and Planetary Science Conference Proceedings, 2: 177
    Guo, D. J., Bao, Y. M., Liu, Y., et al., 2024. Geological Investigation of the Lunar Apollo Basin: From Surface Composition to Interior Structure. Earth and Planetary Science Letters, 646: 118986. https://doi.org/10.1016/j.epsl.2024.118986
    Irving, A. J., Steele, I. M., Smith, J. V., 1974. Lunar Noritic Fragments and Associated Diopside Veins. American Mineralogist: Journal of Earth and Planetary Materials, 59(9–10): 1062–1068
    Li, C. L., Hu, H., Yang, M. F., et al., 2025. Nature of the Lunar Far-Side Samples Returned by the Chang'E-6 Mission. National Science Review, 11(11): nwae328. https://doi.org/10.1093/nsr/nwae328
    Lindstrom, M. M., Marvin, U. B., Mittlefehldt, D. W., 1989. Apollo 15 Mg- and Fe-Norites: A Redefinition of the Mg-Suite Differentiation Trend. Lunar and Planetary Science Conference Proceedings, 19: 245–254
    Liu, X. Y., Gu, L. X., Tian, H. C., et al., 2024. First Classification of Iron Meteorite Fragment Preserved in Chang'e-5 Lunar Soils. Science Bulletin, 69(4): 554–561. https://doi.org/10.1016/j.scib.2023.12.032
    Longhi, J., 1982. Effects of Fractional Crystallization and Cumulus Processes on Mineral Composition Trends of Some Lunar and Terrestrial Rock Series. Journal of Geophysical Research: Solid Earth, 87(S01): A54–A64. https://doi.org/10.1029/jb087is01p00A54
    Longhi, J., 2003. A New View of Lunar Ferroan Anorthosites: Postmagma Ocean Petrogenesis. Journal of Geophysical Research: Planets, 108(E8): 5083. https://doi.org/10.1029/2002je001941
    Lovering, J. F., 1964. Electron Microprobe Analysis of the Metallic Phase in Basic Achondrites. Nature, 203(4940): 70. https://doi.org/10.1038/203070a0
    Luo, F. L., Xiao, Z. Y., Wang, Y. C., et al., 2024. The Production Population of Impact Craters in the Chang'E-6 Landing Mare. The Astrophysical Journal Letters, 974(2): L37. https://doi.org/10.3847/2041-8213/ad821a
    Mehta, S., Goldstein, J. I., 1980. Metallic Particles in the Glassy Constituents of Three Lunar Highland Samples 65315, 67435 and 78235. In: 11th Lunar and Planetary Science Conference, Texas, 2: 1713–1725
    McCallum, I. S., Mathez, E. A., 1975. Petrology of Noritic Cumulates and a Partial Melting Model for the Genesis of Fra Mauro Basalts. Lunar and Planetary Science Conference Proceedings, 1: 395–414
    McCallum, I. S., Mathez, E. A., Okamura, F. P., et al., 1975. Petrology of Noritic Cumulates: Samples 78235 and 78238. In: Abstracts of the Lunar and Planetary Science Conference. 6: 534–536
    Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al., 2000. Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins. Journal of Geophysical Research: Planets, 105(E2): 4197–4216. https://doi.org/10.1029/1999je001103
    Papike, J. J., 1998. Chapter 7. Comparative Planetary Mineralogy: Chemistry of Melt-Deriyed Pyroxene, Feldspar, and Olivine. Planetary Materials, 36: 1–11. https://doi.org/10.1515/9781501508806-022
    Papike, J. J., Karner, J. M., Shearer, C. K., 2003. Determination of Planetary Basalt parentage: A Simple Technique Using the Electron Microprobe. American Mineralogist, 88(2/3): 469–472. https://doi.org/10.2138/am-2003-2-323
    Ringwood, A. E., Seifert, S., 1986. Nickel-Cobalt Abundance Systematics and Their Bearing on Lunar Origin. Lunar Planetary Inst. Conf. on the Origin of the Moon. October 13–16, 1984, Kona
    Ryder, G., Norman, M. D., Score, R. A., 1980. The Distinction of Pristine from Meteorite-Contaminated Highlands Rocks Using Metal Compositions. In: 11th Lunar and Planetary Science Conference, Texas, 1: 471–479
    Sclar, C. B., Bauer, J. F., 1975. Shock-Induced Subsolidus Reduction-Decomposition of Orthopyroxene and Shock-Induced Melting in Norite 78235. Lunar and Planetary Science Conference Proceedings, 1: 799–820
    Shearer, C. K., Papike, J. J., 1999. Magmatic Evolution of the Moon. American Mineralogist, 84(10): 1469–1494. https://doi.org/10.2138/am-1999-1001
    Shearer, C. K., Elardo, S. M., Petro, N. E., et al., 2015. Origin of the Lunar Highlands Mg-Suite: An Integrated Petrology, Geochemistry, Chronology, and Remote Sensing Perspective. American Mineralogist, 100(1): 294–325. https://doi.org/10.2138/am-2015-4817
    Sist, E., Černok, A., Beinlich, A., et al., 2024. Investigating the Origin of Fe-Ni Metal and Sulfides in Shocked Apollo Mg-Suite Rocks. Europlanet Science Congress, 17: EPSC2024-1083. https://doi.org/10.5194/epsc2024-1083
    Smith, J. V., Steele, I. M., 1976. Lunar Mineralogy; a Heavenly Detective Story; Part Ⅱ. American Mineralogist, 61(11–12): 1059–1116
    Spudis, P. D., Gillis, J. J., Reisse, R. A., 1994. Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry. Science, 266(5192): 1848–1851. https://doi.org/10.1126/science.266.5192.1848
    Stolper, E., 1975. Petrogenesis of Eucrite, Howardite and Diogenite Meteorites. Nature, 258(5532): 220–222. https://doi.org/10.1038/258220a0
    Su, B., Chen, Y., Wang, Z. L., et al., 2025. South Pole-Aitken Massive Impact 4.25 Billion Years Ago Revealed by Chang'e-6 Samples. National Science Review, 12(6): nwaf103. https://doi.org/10.1093/nsr/nwaf103
    Wahl, W., 1952. The Brecciated Stony Meteorites and Meteorites Containing Foreign Fragments. Geochimica et Cosmochimica Acta, 2(2): 91–117. https://doi.org/10.1016/0016-7037(52)90002-1
    Wang, Z. C., Li, Y. H., Li, J. W., et al., 2025. Chemical Compositions of Chang'e-6 Lunar Soil and Substantial Addition of Noritic Crust Ejecta from Apollo Basin. Geology, 53(7): 557–561. https://doi.org/10.1130/g53086.1
    Wang, Z. L., Tian, W., Wang, W. R., et al., 2025. Genesis and Timing of KREEP-Free Lunar Mg-Suite Magmatism Indicated by the First Norite Meteorite Arguin 002. Communications Earth & Environment, 6: 170. https://doi.org/10.1038/s43247-025-02086-7
    Warner, P. H., 1993. A Concisse Compilation of Petrologic Information on Possibly Pristine Nonmare Moon Rocks. American Mineralogist, 78(3–4): 360–376
    Wieczorek, M. A., Weiss, B. P., Stewart, S. T., 2012. An Impactor Origin for Lunar Magnetic Anomalies. Science, 335(6073): 1212–1215. https://doi.org/10.1126/science.1214773
    Wu, Y., Yan, P., Pan, L., 2025. Petrological and Geochemical Modifications during Impact Melting and Cooling in Shocked Lunar Regolith: Insights from Heterogeneous Chang'E-5 Impact Melt-Bearing Particle. Journal of Earth Science, online first. https://doi.org/10.1007/s12583-024-0151-8
    Xiong, M. C., Wu, Y. X., Yao, W. Q., et al., 2024. The Formation Mechanisms of Np-Fe in Lunar Regolith: A Review. Materials, 17(23): 5866. https://doi.org/10.3390/ma17235866
    Yan, P., Xiao, Z. Y., Wu, Y. H., et al., 2022. Intricate Regolith Reworking Processes Revealed by Microstructures on Lunar Impact Glasses. Journal of Geophysical Research: Planets, 127(12): e2022JE007260. https://doi.org/10.1029/2022je007260
    Zhang, M. W., Fa, W. Z., Jia, B. J., 2025. Provenance and Evolution of Lunar Regolith at the Chang'e-6 Sampling Site. Nature Astronomy, 9: 813–823. https://doi.org/10.1038/s41550-025-02525-7
    Zhang, Q. W. L., Yang, M. -H., Li, Q. -L., et al., 2025. Lunar Farside Volcanism 2.8 Billion Years Ago from Chang'e-6 Basalts. Nature, 643(8071): 356–360. https://doi.org/10.1038/s41586-024-08382-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views(9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return