Cui, Z. X., Yang, Q., Zhang, Y. Q., et al., 2024. A Sample of the Moon's Far Side Retrieved by Chang'e-6 Contains 2.83-Billion-Year-Old Basalt. Science, 386(6728): 1395–1399. https://doi.org/10.1126/science.adt1093 |
Day, J. M. D., 2020. Metal Grains in Lunar Rocks as Indicators of Igneous and Impact Processes. Meteoritics & Planetary Science, 55(8): 1–15. https://doi.org/10.1111/maps.13544 |
Duke, M. B., 1965. Metallic Iron in Basaltic Achondrites. Journal of Geophysical Research (1896-1977), 70(6): 1523–1527. https://doi.org/10.1029/jz070i006p01523 |
Friel, J. J., Goldstein, J. I., 1977. Metallic Phases in the Luna 24 Soil Samples. Geophysical Research Letters, 4(10): 481–483. https://doi.org/10.1029/gl004i010p00481 |
Fuchs, L. H., Olsen, E., 1973. Composition of Metal in Type Ⅲ Carbonaceous Chondrites and Its Relevance to the Source-Assignment of Lunar Metal. Earth and Planetary Science Letters, 18(3): 379–384. https://doi.org/10.1016/0012-821x(73)90093-9 |
Goldstein, J. I., Axon, H. J., 1973. Composition, Structure, and Thermal History of Metallic Particles from 3 Apollo 16 Soils, 65701, 68501, and 63501. In: 4th Lunar and Planetary Science Conference, Texas, 4: 751–775 |
Goldstein, J. I., Blau, P. J., 1973. Chemistry and Thermal History of Metal Particles in Luna 20 Soils. Geochimica et Cosmochimica Acta, 37(4): 847–855. https://doi.org/10.1016/0016-7037(73)90182-8 |
Goldstein, J. I., Yakowitz, H., 1971. Metallic Inclusions and Metal Particles in the Apollo 12 Lunar Soil. Lunar and Planetary Science Conference Proceedings, 2: 177 |
Guo, D. J., Bao, Y. M., Liu, Y., et al., 2024. Geological Investigation of the Lunar Apollo Basin: From Surface Composition to Interior Structure. Earth and Planetary Science Letters, 646: 118986. https://doi.org/10.1016/j.epsl.2024.118986 |
Irving, A. J., Steele, I. M., Smith, J. V., 1974. Lunar Noritic Fragments and Associated Diopside Veins. American Mineralogist: Journal of Earth and Planetary Materials, 59(9–10): 1062–1068 |
Li, C. L., Hu, H., Yang, M. F., et al., 2025. Nature of the Lunar Far-Side Samples Returned by the Chang'E-6 Mission. National Science Review, 11(11): nwae328. https://doi.org/10.1093/nsr/nwae328 |
Lindstrom, M. M., Marvin, U. B., Mittlefehldt, D. W., 1989. Apollo 15 Mg- and Fe-Norites: A Redefinition of the Mg-Suite Differentiation Trend. Lunar and Planetary Science Conference Proceedings, 19: 245–254 |
Liu, X. Y., Gu, L. X., Tian, H. C., et al., 2024. First Classification of Iron Meteorite Fragment Preserved in Chang'e-5 Lunar Soils. Science Bulletin, 69(4): 554–561. https://doi.org/10.1016/j.scib.2023.12.032 |
Longhi, J., 1982. Effects of Fractional Crystallization and Cumulus Processes on Mineral Composition Trends of Some Lunar and Terrestrial Rock Series. Journal of Geophysical Research: Solid Earth, 87(S01): A54–A64. https://doi.org/10.1029/jb087is01p00A54 |
Longhi, J., 2003. A New View of Lunar Ferroan Anorthosites: Postmagma Ocean Petrogenesis. Journal of Geophysical Research: Planets, 108(E8): 5083. https://doi.org/10.1029/2002je001941 |
Lovering, J. F., 1964. Electron Microprobe Analysis of the Metallic Phase in Basic Achondrites. Nature, 203(4940): 70. https://doi.org/10.1038/203070a0 |
Luo, F. L., Xiao, Z. Y., Wang, Y. C., et al., 2024. The Production Population of Impact Craters in the Chang'E-6 Landing Mare. The Astrophysical Journal Letters, 974(2): L37. https://doi.org/10.3847/2041-8213/ad821a |
Mehta, S., Goldstein, J. I., 1980. Metallic Particles in the Glassy Constituents of Three Lunar Highland Samples 65315, 67435 and 78235. In: 11th Lunar and Planetary Science Conference, Texas, 2: 1713–1725 |
McCallum, I. S., Mathez, E. A., 1975. Petrology of Noritic Cumulates and a Partial Melting Model for the Genesis of Fra Mauro Basalts. Lunar and Planetary Science Conference Proceedings, 1: 395–414 |
McCallum, I. S., Mathez, E. A., Okamura, F. P., et al., 1975. Petrology of Noritic Cumulates: Samples 78235 and 78238. In: Abstracts of the Lunar and Planetary Science Conference. 6: 534–536 |
Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al., 2000. Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins. Journal of Geophysical Research: Planets, 105(E2): 4197–4216. https://doi.org/10.1029/1999je001103 |
Papike, J. J., 1998. Chapter 7. Comparative Planetary Mineralogy: Chemistry of Melt-Deriyed Pyroxene, Feldspar, and Olivine. Planetary Materials, 36: 1–11. https://doi.org/10.1515/9781501508806-022 |
Papike, J. J., Karner, J. M., Shearer, C. K., 2003. Determination of Planetary Basalt parentage: A Simple Technique Using the Electron Microprobe. American Mineralogist, 88(2/3): 469–472. https://doi.org/10.2138/am-2003-2-323 |
Ringwood, A. E., Seifert, S., 1986. Nickel-Cobalt Abundance Systematics and Their Bearing on Lunar Origin. Lunar Planetary Inst. Conf. on the Origin of the Moon. October 13–16, 1984, Kona |
Ryder, G., Norman, M. D., Score, R. A., 1980. The Distinction of Pristine from Meteorite-Contaminated Highlands Rocks Using Metal Compositions. In: 11th Lunar and Planetary Science Conference, Texas, 1: 471–479 |
Sclar, C. B., Bauer, J. F., 1975. Shock-Induced Subsolidus Reduction-Decomposition of Orthopyroxene and Shock-Induced Melting in Norite 78235. Lunar and Planetary Science Conference Proceedings, 1: 799–820 |
Shearer, C. K., Papike, J. J., 1999. Magmatic Evolution of the Moon. American Mineralogist, 84(10): 1469–1494. https://doi.org/10.2138/am-1999-1001 |
Shearer, C. K., Elardo, S. M., Petro, N. E., et al., 2015. Origin of the Lunar Highlands Mg-Suite: An Integrated Petrology, Geochemistry, Chronology, and Remote Sensing Perspective. American Mineralogist, 100(1): 294–325. https://doi.org/10.2138/am-2015-4817 |
Sist, E., Černok, A., Beinlich, A., et al., 2024. Investigating the Origin of Fe-Ni Metal and Sulfides in Shocked Apollo Mg-Suite Rocks. Europlanet Science Congress, 17: EPSC2024-1083. https://doi.org/10.5194/epsc2024-1083 |
Smith, J. V., Steele, I. M., 1976. Lunar Mineralogy; a Heavenly Detective Story; Part Ⅱ. American Mineralogist, 61(11–12): 1059–1116 |
Spudis, P. D., Gillis, J. J., Reisse, R. A., 1994. Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry. Science, 266(5192): 1848–1851. https://doi.org/10.1126/science.266.5192.1848 |
Stolper, E., 1975. Petrogenesis of Eucrite, Howardite and Diogenite Meteorites. Nature, 258(5532): 220–222. https://doi.org/10.1038/258220a0 |
Su, B., Chen, Y., Wang, Z. L., et al., 2025. South Pole-Aitken Massive Impact 4.25 Billion Years Ago Revealed by Chang'e-6 Samples. National Science Review, 12(6): nwaf103. https://doi.org/10.1093/nsr/nwaf103 |
Wahl, W., 1952. The Brecciated Stony Meteorites and Meteorites Containing Foreign Fragments. Geochimica et Cosmochimica Acta, 2(2): 91–117. https://doi.org/10.1016/0016-7037(52)90002-1 |
Wang, Z. C., Li, Y. H., Li, J. W., et al., 2025. Chemical Compositions of Chang'e-6 Lunar Soil and Substantial Addition of Noritic Crust Ejecta from Apollo Basin. Geology, 53(7): 557–561. https://doi.org/10.1130/g53086.1 |
Wang, Z. L., Tian, W., Wang, W. R., et al., 2025. Genesis and Timing of KREEP-Free Lunar Mg-Suite Magmatism Indicated by the First Norite Meteorite Arguin 002. Communications Earth & Environment, 6: 170. https://doi.org/10.1038/s43247-025-02086-7 |
Warner, P. H., 1993. A Concisse Compilation of Petrologic Information on Possibly Pristine Nonmare Moon Rocks. American Mineralogist, 78(3–4): 360–376 |
Wieczorek, M. A., Weiss, B. P., Stewart, S. T., 2012. An Impactor Origin for Lunar Magnetic Anomalies. Science, 335(6073): 1212–1215. https://doi.org/10.1126/science.1214773 |
Wu, Y., Yan, P., Pan, L., 2025. Petrological and Geochemical Modifications during Impact Melting and Cooling in Shocked Lunar Regolith: Insights from Heterogeneous Chang'E-5 Impact Melt-Bearing Particle. Journal of Earth Science, online first. https://doi.org/10.1007/s12583-024-0151-8 |
Xiong, M. C., Wu, Y. X., Yao, W. Q., et al., 2024. The Formation Mechanisms of Np-Fe in Lunar Regolith: A Review. Materials, 17(23): 5866. https://doi.org/10.3390/ma17235866 |
Yan, P., Xiao, Z. Y., Wu, Y. H., et al., 2022. Intricate Regolith Reworking Processes Revealed by Microstructures on Lunar Impact Glasses. Journal of Geophysical Research: Planets, 127(12): e2022JE007260. https://doi.org/10.1029/2022je007260 |
Zhang, M. W., Fa, W. Z., Jia, B. J., 2025. Provenance and Evolution of Lunar Regolith at the Chang'e-6 Sampling Site. Nature Astronomy, 9: 813–823. https://doi.org/10.1038/s41550-025-02525-7 |
Zhang, Q. W. L., Yang, M. -H., Li, Q. -L., et al., 2025. Lunar Farside Volcanism 2.8 Billion Years Ago from Chang'e-6 Basalts. Nature, 643(8071): 356–360. https://doi.org/10.1038/s41586-024-08382-0 |