Addis, M. A., 1997. The Stress-Depletion Response of Reservoirs. SPE Annual Technical Conference and Exhibition. October 5–8, 1997. San Antonio, Texas. SPE, SPE-38720-MS. https://doi.org/10.2118/38720-ms |
Altmann, J. B., Müller, B. I. R., Müller, T. M., et al., 2014. Pore Pressure Stress Coupling in 3D and Consequences for Reservoir Stress States and Fault Reactivation. Geothermics, 52: 195–205. https://doi.org/10.1016/j.geothermics.2014.01.004 |
Biot, M. A., 1956. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. Ⅱ. Higher Frequency Range. The Journal of the Acoustical Society of America, 28(2): 179–191. https://doi.org/10.1121/1.1908241 |
Chen, Z. J., Song, S. Y., Zhang, W., et al., 2025. Investigation of Thermal-Hydraulic-Mechanical Coupling Model for in-situ Transformation of Oil Shale Considering Pore Structure and Anisotropy. Engineering Geology, 344: 107859. https://doi.org/10.1016/j.enggeo.2024.107859 |
Cobbold, P. R., Rodrigues, N., 2007. Seepage Forces, Important Factors in the Formation of Horizontal Hydraulic Fractures and Bedding-Parallel Fibrous Veins ('Beef' and 'Cone-in-Cone'). Geofluids, 7(3): 313–322. https://doi.org/10.1111/j.1468-8123.2007.00183.x |
Eckert, A., Zhang, W. C., Liu, X. L., et al., 2015. Numerical Estimates of the Maximum Sustainable Pore Pressure in Anticline Formations Using the Tensor Based Concept of Pore Pressure-Stress Coupling. Journal of Rock Mechanics and Geotechnical Engineering, 7(1): 60–72. https://doi.org/10.1016/j.jrmge.2014.11.001 |
Gou, Q. Y., Xu, S., Hao, F., et al., 2019. Full-Scale Pores and Micro-Fractures Characterization Using FE-SEM, Gas Adsorption, Nano-CT and Micro-CT: A Case Study of the Silurian Longmaxi Formation Shale in the Fuling Area, Sichuan Basin, China. Fuel, 253: 167–179. https://doi.org/10.1016/j.fuel.2019.04.116 |
Hillis, R., 2000. Pore Pressure/Stress Coupling and Its Implications for Seismicity. Exploration Geophysics, 31(1/2): 448–454. https://doi.org/10.1071/eg00448 |
Hu, M. S., Steefel, C. I., Rutqvist, J., et al., 2023. Microscale THMC Modeling of Pressure Solution in Salt Rock: Impacts of Geometry and Temperature. Rock Mechanics and Rock Engineering, 56(10): 7071–7089. https://doi.org/10.1007/s00603-022-03162-6 |
Johnson, C. W., Fu, Y. N., Bürgmann, R., 2017. Seasonal Water Storage, Stress Modulation, and California Seismicity. Science, 356(6343): 1161–1164. https://doi.org/10.1126/science.aak9547 |
Konstantinovskaya, E., Malo, M., Castillo, D. A., 2012. Present-Day Stress Analysis of the St. Lawrence Lowlands Sedimentary Basin (Canada) and Implications for Caprock Integrity during CO2 Injection Operations. Tectonophysics, 518: 119–137. https://doi.org/10.1016/j.tecto.2011.11.022 |
Lash, G. G., Engelder, T., 2005. An Analysis of Horizontal Microcracking during catagenesis: Example from the Catskill Delta Complex. AAPG Bulletin, 89(11): 1433–1449. https://doi.org/10.1306/05250504141 |
Liu, B. C., Xu, S., Hao, F., et al., 2024. Stress Path and Its Application in Energy Geology: A Review. Geoenergy Science and Engineering, 241: 213095. https://doi.org/10.1016/j.geoen.2024.213095 |
Liu, H. M., Zhang, S., Song, G. Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression. Journal of Earth Science, 28(6): 1064–1077. https://doi.org/10.1007/s12583-016-0946-3 |
Luo, Y., Liu, H. P., Zhao, Y. C., et al., 2016. Effects of Gas Generation on Stress States during Burial and Implications for Natural Fracture Development. Journal of Natural Gas Science and Engineering, 30: 295–304. https://doi.org/10.1016/j.jngse.2016.02.023 |
Mildren, S. D., Hillis, R. R., Kaldi, J., 2002. Calibrating Predictions of Fault Seal Reactivation in the Timor Sea. The APPEA Journal, 42(1): 187. https://doi.org/10.1071/aj01011 |
Mortazavi, A., Atapour, H., 2018. An Experimental Study of Stress Changes Induced by Reservoir Depletion under True Triaxial Stress Loading Conditions. Journal of Petroleum Science and Engineering, 171: 1366–1377. https://doi.org/10.1016/j.petrol.2018.08.047 |
Mourgues, R., Bureau, D., Bodet, L., et al., 2012. Formation of Conical Fractures in Sedimentary Basins: Experiments Involving Pore Fluids and Implications for Sandstone Intrusion Mechanisms. Earth and Planetary Science Letters, 313: 67–78. https://doi.org/10.1016/j.epsl.2011.10.029 |
Obradors-Prats, J., Rouainia, M., Aplin, A. C., et al., 2019. A Diagenesis Model for Geomechanical Simulations: Formulation and Implications for Pore Pressure and Development of Geological Structures. Journal of Geophysical Research: Solid Earth, 124(5): 4452–4472. https://doi.org/10.1029/2018jb016673 |
Regenauer-Lieb, K., Bunger, A., Chua, H. T., et al., 2015. Deep Geothermal: The 'Moon Landing' Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 26(1): 2–10. https://doi.org/10.1007/s12583-015-0515-1 |
Safari, M. R., Trevor, O., Queena, C., et al., 2013. Effects of Depletion/Injection Induced Stress Changes on Natural Fracture Reactivation. 47th U. S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013. Paper Number: ARMA-2013-395 |
Segall, P., Lu, S., 2015. Injection-Induced Seismicity: Poroelastic and Earthquake Nucleation Effects. Journal of Geophysical Research: Solid Earth, 120(7): 5082–5103. https://doi.org/10.1002/2015jb012060 |
Shen, L. W., Schmitt, D. R., Schultz, R., 2019. Frictional Stabilities on Induced Earthquake Fault Planes at Fox Creek, Alberta: A Pore Fluid Pressure Dilemma. Geophysical Research Letters, 46(15): 8753–8762. https://doi.org/10.1029/2019gl083566 |
Soltanzadeh, H., Hawkes, C. D., 2008. Semi-Analytical Models for Stress Change and Fault Reactivation Induced by Reservoir Production and Injection. Journal of Petroleum Science and Engineering, 60(2): 71–85. https://doi.org/10.1016/j.petrol.2007.05.006 |
Sun, Z. H., Che, M. G., Zhu, L. H., et al., 2024. Implications for Fault Reactivation and Seismicity Induced by Hydraulic Fracturing. Petroleum Science, 21(2): 1081–1098. https://doi.org/10.1016/j.petsci.2023.11.022 |
Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley and Sons, Hoboken |
Tingay, M. R. P., Hillis, R. R., Morley, C. K., et al., 2009. Present-Day Stress and Neotectonics of Brunei: Implications for Petroleum Exploration and Production. AAPG Bulletin, 93(1): 75–100. https://doi.org/10.1306/08080808031 |
Toda, S., Stein, R. S., Sagiya, T., 2002. Evidence from the AD 2000 Izu Islands Earthquake Swarm that Stressing Rate Governs Seismicity. Nature, 419(6902): 58–61. https://doi.org/10.1038/nature00997 |
Warren-Smith, E., Fry, B., Wallace, L., et al., 2019. Episodic Stress and Fluid Pressure Cycling in Subducting Oceanic Crust during Slow Slip. Nature Geoscience, 12(6): 475–481. https://doi.org/10.1038/s41561-019-0367-x |
Wiprut, D., Zoback, M. D., 2000. Fault Reactivation and Fluid Flow along a Previously Dormant Normal Fault in the Northern North Sea. Geology, 28(7): 595. https://doi.org/10.1130/0091-7613(2000)28595:fraffa2.0.co;2 |
Xie, X. N., Jiu, J. J., Li, S. T., et al., 2003. Salinity Variation of Formation Water and Diagenesis Reaction in Abnormal Pressure Environments. Science in China Series D: Earth Sciences, 46(3): 269–284. https://doi.org/10.1360/03yd9025 |
Xu, S., Gou, Q. Y., Hao, F., et al., 2020. Multiscale Faults and Fractures Characterization and Their Effects on Shale Gas Accumulation in the Jiaoshiba Area, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 189: 107026. https://doi.org/10.1016/j.petrol.2020.107026 |
Xu, S., Liu, R., Hao, F., et al., 2019. Complex Rotation of Maximum Horizontal Stress in the Wufeng-Longmaxi Shale on the Eastern Margin of the Sichuan Basin, China: Implications for Predicting Natural Fractures. Marine and Petroleum Geology, 109: 519–529. https://doi.org/10.1016/j.marpetgeo.2019.06.008 |
Xu, S., Wen, J., Gou, Q. Y., et al., 2024. Research Progress and Significance of Shale Oil Micro-Migration. Journal of Earth Science, 35(5): 1765–1769. https://doi.org/10.1007/s12583-024-0071-7 |
Zienkiewicz, O. C., Shiomi, T., 1984. Dynamic Behaviour of Saturated Porous Media; The Generalized Biot Formulation and Its Numerical Solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8(1): 71–96. https://doi.org/10.1002/nag.1610080106 |