Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Junjie Ji, Qiuming Cheng, Yang Zhang, Yuanzhi Zhou, Tao Hong. Machine Learning Discovers South American Subduction Zone Hotter than previously Predicted. Journal of Earth Science, 2025, 36(3): 1277-1289. doi: 10.1007/s12583-025-0222-5
Citation: Junjie Ji, Qiuming Cheng, Yang Zhang, Yuanzhi Zhou, Tao Hong. Machine Learning Discovers South American Subduction Zone Hotter than previously Predicted. Journal of Earth Science, 2025, 36(3): 1277-1289. doi: 10.1007/s12583-025-0222-5

Machine Learning Discovers South American Subduction Zone Hotter than previously Predicted

doi: 10.1007/s12583-025-0222-5
More Information
  • Corresponding author: Qiuming Cheng, qiuming.cheng@iugs.org
  • Received Date: 09 Nov 2024
  • Accepted Date: 25 Feb 2025
  • Issue Publish Date: 30 Jun 2025
  • Geothermal heat flow (GHF) is crucial for characterizing the Earth's thermal state. Compared to other regions worldwide, GHF measurements of South America are relatively sparse for mapping GHF over the continent based on traditional models. Here we apply the machine learning (ML) techniques to predict the GHF in South America. By comparing the global model, ML finds that South American subduction zones are hotter than the global model due to large-scale magmatism, which leads to the higher shallow arc temperatures than canonical thermomechanical and global models. Combining ML model with the local singularity analysis of heat flows, active volcanoes, and igneous rock samples, it is suggested that geothermal anomalies along the Andean Mountain Range are spatially correlated with magmatic activity in the subduction zone. It is concluded that the ML methods may provide reliable GHF prediction in regions like South America, where GHF measurements are limited and uneven.

     

  • Electronic Supplementary Materials: Supplementary materials (Figure S1, Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-025-0222-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Astort, A., Colavitto, B., Sagripanti, L., et al., 2019. Crustal and Mantle Structure beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data. Tectonics, 38(1): 144–158. https://doi.org/10.1029/2017tc004806
    Ávila, P., Dávila, F. M., 2020. Lithospheric Thinning and Dynamic Uplift Effects during Slab Window Formation, Southern Patagonia (45°–55°S). Journal of Geodynamics, 133: 101689. https://doi.org/10.1016/j.jog.2019.101689
    Bishop, B. T., Beck, S. L., Zandt, G., et al., 2017. Causes and Consequences of Flat-Slab Subduction in Southern Peru. Geosphere, 13(5): 1392–1407. https://doi.org/10.1130/ges01440.1
    Bodri, L., Bodri, B., 1985. On the Correlation between Heat Flow and Crustal Thickness. Tectonophysics, 120(1/2): 69–81. https://doi.org/10.1016/0040-1951(85)90087-3
    Breiman, L., 2001. Random Forests. Machine Learning, 45: 5–32. https://doi.org/10.1023/a:1010933404324
    Brune, J. N., Henyey, T. L., Roy, R. F., 1969. Heat Flow, Stress, and Rate of Slip along the San Andreas Fault, California. Journal of Geophysical Research, 74(15): 3821–3827. https://doi.org/10.1029/jb074i015p03821
    Chen, G. X., Cheng, Q. M., Lyons, T. W., et al., 2022a. Reconstructing Earth's Atmospheric Oxygenation History Using Machine Learning. Nature Communications, 13: 5862. https://doi.org/10.1038/s41467-022-33388-5
    Chen, G. X., Cheng, Q. M., Peters, S. E., et al., 2022b. Feedback between Surface and Deep processes: Insight from Time Series Analysis of Sedimentary Record. Earth and Planetary Science Letters, 579: 117352. https://doi.org/10.1016/j.epsl.2021.117352
    Chen, T., He, T., Benesty, M., et al., 2015. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2, 1(4): 1–4
    Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. https://doi.org/10.1016/j.oregeorev.2006.10.002
    Cheng, Q. M., Agterberg, F. P., 2009. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments. Computers & Geosciences, 35(2): 234–244. https://doi.org/10.1016/j.cageo.2008.02.034
    Cheng, Q. M., 2017. Singularity Analysis of Global Zircon U-Pb Age Series and Implication of Continental Crust Evolution. Gondwana Research, 51: 51–63. https://doi.org/10.1016/j.gr.2017.07.011
    Cheng, Q. M., 2018a. Singularity Analysis of Magmatic Flare-ups Caused by India-Asia Collisions. Journal of Geochemical Exploration, 189: 25–31. https://doi.org/10.1016/j.gexplo.2017.08.012
    Cheng, Q. M., 2018b. Extrapolations of Secular Trends in Magmatic Intensity and Mantle cooling: Implications for Future Evolution of Plate Tectonics. Gondwana Research, 63: 268–273. https://doi.org/10.1016/j.gr.2018.08.001
    Christiansen, R. O., Gianni, G. M., Ballivián Justiniano, C. A., et al., 2022. The Role of Geotectonic Setting on the Heat Flow Distribution of Southern South America. Geophysical Journal International, 230(3): 1911–1927. https://doi.org/10.1093/gji/ggac161
    Cordani, U. G., Ramos, V. A., Fraga, L. M., et al., 2016. Tectonic Map of South America. Second Edition 1 : 5 000 000. Commission for the Geological Map of the World. CCGM/CGMW, Paris
    Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273–297. https://doi.org/10.1023/a:1022627411411
    Davies, J. H., Davies, D. R., 2010. Earth's Surface Heat Flux. Solid Earth, 1(1): 5–24. https://doi.org/10.5194/se-1-5-2010
    Davies, J. H., 2013. Global Map of Solid Earth Surface Heat Flow. Geochemistry, Geophysics, Geosystems, 14(10): 4608–4622. https://doi.org/10.1002/ggge.20271
    Fialko, Y., Pearse, J., 2012. Sombrero Uplift above the Altiplano-Puna Magma Body: Evidence of a Ballooning Mid-Crustal Diapir. Science, 338(6104): 250–252. https://doi.org/10.1126/science.1226358
    Friedman, J., Tibshirani, R., Hastie, T., 2000. Additive Logistic Regression: A Statistical View of Boosting (with Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28(2): 337–407. https://doi.org/10.1214/aos/1016120463
    Friedman, J. H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5). https://doi.org/10.1214/aos/1013203451
    Friedman, J. H., 2002. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38(4): 367–378. https://doi.org/10.1016/s0167-9473(01)00065-2
    Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385–410. https://doi.org/10.1146/annurev.earth.031208.100051
    Furukawa, Y., 1993. Depth of the Decoupling Plate Interface and Thermal Structure under Arcs. Journal of Geophysical Research: Solid Earth, 98(B11): 20005–20013. https://doi.org/10.1029/93jb02020
    Gianni, G. M., García, H. P. A., Lupari, M., et al., 2017. Plume Overriding Triggers Shallow Subduction and Orogeny in the Southern Central Andes. Gondwana Research, 49: 387–395. https://doi.org/10.1016/j.gr.2017.06.011
    Global Heat Flow Data Assessment Group, Fuchs, S., Neumann, F., et al., 2024. The Global Heat Flow Database: Release 2024. GFZ Data Services. [2024-11-9]. https://www.gfz.de/en/section/geoenergy/data-products-services/global-heat-flow-database
    Global Volcanism Program, 2023. [Database] Volcanoes of the World (v. 5.0. 4; 17 Apr 2023). Distributed by Smithsonian Institution, Compiled by Venzke, E
    Goutorbe, B., Poort, J., Lucazeau, F., et al., 2011. Global Heat Flow Trends Resolved from Multiple Geological and Geophysical Proxies. Geophysical Journal International, 187(3): 1405–1419. https://doi.org/10.1111/j.1365-246x.2011.05228.x
    Groome, W. G., Thorkelson, D. J., 2009. The Three-Dimensional Thermo-Mechanical Signature of Ridge Subduction and Slab Window Migration. Tectonophysics, 464(1/2/3/4): 70–83. https://doi.org/10.1016/j.tecto.2008.07.003
    Hamza, V. M., Muñoz, M., 1996. Heat Flow Map of South America. Geothermics, 25(6): 599–646. https://doi.org/10.1016/s0375-6505(96)00025-9
    Hamza, V. M., Gomes, A. J. F., Ferreira, L. E. T., 2005. Status Report on Geothermal Energy Developments in Brazil. In: Proceedings World Geothermal Congress 2005, Apr. 24–29, 2005, Antalya
    He, J. F., Li, K. W., Wang, X. W., et al., 2022. A Machine Learning Methodology for Predicting Geothermal Heat Flow in the Bohai Bay Basin, China. Natural Resources Research, 31(1): 237–260. https://doi.org/10.1007/s11053-021-10002-x
    Hu, P. Y., Zhai, Q. G., Cawood, P. A., et al., 2024. Detrital Zircon REE and Tectonic Settings. Lithos, 480: 107661. https://doi.org/10.1016/j.lithos.2024.107661
    Jones, R. D. W., Katz, R. F., Tian, M., et al., 2018. Thermal Impact of Magmatism in Subduction Zones. Earth and Planetary Science Letters, 481: 73–79. https://doi.org/10.1016/j.epsl.2017.10.015
    Kelemen, P. B., Rilling, J. L., Parmentier, E. M., et al., 2003. Thermal Structure Due to Solid-State Flow in the Mantle Wedge beneath Arcs. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D. C. 293–311. https://doi.org/10.1029/138gm13
    Lehnert, K., Su, Y., Langmuir, C. H., et al., 2000. A Global Geochemical Database Structure for Rocks. Geochemistry, Geophysics, Geosystems, 1(5). https://doi.org/10.1029/1999gc000026
    Li, C. F., Lu, Y., Wang, J., 2017. A Global Reference Model of Curie-Point Depths Based on EMAG2. Scientific Reports, 7: 45129. https://doi.org/10.1038/srep45129
    Li, M., Huang, S., Dong, M., et al., 2021. Prediction of Marine Heat Flow Based on the Random Forest Method and Geological and Geophysical Features. Marine Geophysical Research, 42(3): 30. https://doi.org/10.1007/s11001-021-09452-y
    Lösing, M., Ebbing, J., 2021. Predicting Geothermal Heat Flow in Antarctica with a Machine Learning Approach. Journal of Geophysical Research: Solid Earth, 126(6): e2020JB021499. https://doi.org/10.1029/2020jb021499
    Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001–4024. https://doi.org/10.1029/2019gc008389
    Majorowicz, J., Grasby, S. E., 2010. Heat Flow, Depth-Temperature Variations and Stored Thermal Energy for Enhanced Geothermal Systems in Canada. Journal of Geophysics and Engineering, 7(3): 232–241. https://doi.org/10.1088/1742-2132/7/3/002
    McGary, R. S., Evans, R. L., Wannamaker, P. E., et al., 2014. Pathway from Subducting Slab to Surface for Melt and Fluids beneath Mount Rainier. Nature, 511(7509): 338–340. https://doi.org/10.1038/nature13493
    Navarrete, C., Gianni, G., Massaferro, G., et al., 2020. The Fate of the Farallon Slab beneath Patagonia and Its Links to Cenozoic Intraplate Magmatism, Marine Transgressions and Topographic Uplift. Earth-Science Reviews, 210: 103379. https://doi.org/10.1016/j.earscirev.2020.103379
    Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-Learn: Machine Learning in Python. The Journal of Machine Learning Research, 12: 2825–2830
    Perkins, J. P., Ward, K. M., de Silva, S. L., et al., 2016. Surface Uplift in the Central Andes Driven by Growth of the Altiplano Puna Magma Body. Nature Communications, 7: 13185. https://doi.org/10.1038/ncomms13185
    Perrin, A., Goes, S., Prytulak, J., et al., 2016. Reconciling Mantle Wedge Thermal Structure with Arc Lava Thermobarometric Determinations in Oceanic Subduction Zones. Geochemistry, Geophysics, Geosystems, 17(10): 4105–4127. https://doi.org/10.1002/2016gc006527
    Rezvanbehbahani, S., Stearns, L. A., Kadivar, A., et al., 2017. Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach. Geophysical Research Letters, 44(24): 12271–12279. https://doi.org/10.1002/2017gl075661
    Rosenbaum, G., Caulfield, J. T., Ubide, T., et al., 2021. Spatially and Geochemically Anomalous Arc Magmatism: Insights from the Andean Arc. Geochemistry, Geophysics, Geosystems, 22(6): e2021GC009688. https://doi.org/10.1029/2021gc009688
    Russo, R. M., VanDecar, J. C., Comte, D., et al., 2010. Subduction of the Chile Ridge: Upper Mantle Structure and Flow. GSA Today: 4–10. https://doi.org/10.1130/gsatg61a.1
    Rychert, C. A., Fischer, K. M., Abers, G. A., et al., 2008. Strong Along-Arc Variations in Attenuation in the Mantle Wedge beneath Costa Rica and Nicaragua. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008gc002040
    Stern, C. R., 2004. Active Andean Volcanism: Its Geologic and Tectonic Setting. Revista Geológica de Chile, 31(2): 161–206. https://doi.org/10.4067/s0716-02082004000200001
    Syracuse, E. M., Abers, G. A., Fischer, K., et al., 2008. Seismic Tomography and Earthquake Locations in the Nicaraguan and Costa Rican Upper Mantle. Geochemistry, Geophysics, Geosystems, 9(7). https://doi.org/10.1029/2008gc001963
    Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1/2): 47–63. https://doi.org/10.1016/0040-1951(95)00106-9
    Valdenegro, P., Muñoz, M., Yáñez, G., et al., 2019. A Model for Thermal Gradient and Heat Flow in Central Chile: The Role of Thermal Properties. Journal of South American Earth Sciences, 91: 88–101. https://doi.org/10.1016/j.jsames.2019.01.011
    Vapnik, V., 1999. The Nature of Statistical Learning Theory. Springer Science & Business Media
    Völker, D., Kutterolf, S., Wehrmann, H., 2011. Comparative Mass Balance of Volcanic Edifices at the Southern Volcanic Zone of the Andes between 33°S and 46°S. Journal of Volcanology and Geothermal Research, 205(3/4): 114–129. https://doi.org/10.1016/j.jvolgeores.2011.03.011
    Xu, S., Ni, C., Hu, X. Y., 2023. Predicting Terrestrial Heat Flow in North China Using Multiple Geological and Geophysical Datasets Based on Machine Learning Method. Energies, 16(4): 1620. https://doi.org/10.3390/en16041620
    Zhao, D. P., Wang, Z., Umino, N., et al., 2007. Tomographic Imaging Outside a Seismic Network: Application to the Northeast Japan Arc. Bulletin of the Seismological Society of America, 97(4): 1121–1132. https://doi.org/10.1785/0120050256
    Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph in the Big Data Era. Science China Earth Sciences, 64(7): 1105–1114. https://doi.org/10.1007/s11430-020-9750-4
    Zhou, S. Y., Chu, X., Cao, S. B., et al., 2020. Prediction of the Ground Temperature with ANN, LS-SVM and Fuzzy LS-SVM for GSHP Application. Geothermics, 84: 101757. https://doi.org/10.1016/j.geothermics.2019.101757
    Zhou, Y. Z., Cheng, Q. M., Liu, Y., et al., 2021. Singularity Analysis of Igneous Zircon U-Pb Age and Hf Isotopic Record in the Zhongdian Arc, Northwest Yunnan, China: Implications for Indosinian Magmatic Flare-up and the Formation of Porphyry Copper Deposits. Ore Geology Reviews, 139: 104476. https://doi.org/10.1016/j.oregeorev.2021.104476
    Zhu, Z. Y., Campbell, I. H., Allen, C. M., et al., 2022. The Temporal Distribution of Earth's Supermountains and Their Potential Link to the Rise of Atmospheric Oxygen and Biological Evolution. Earth and Planetary Science Letters, 580: 117391. https://doi.org/10.1016/j.epsl.2022.117391
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(82) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return