Audétat, A., 2019. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. 114(6): 1033–1056. https://doi.org/10.5382/econgeo.4673 |
Becker, S. P., Bodnar, R. J., Reynolds, T. J., 2019. Temporal and Spatial Variations in Characteristics of Fluid Inclusions in Epizonal Magmatic-Hydrothermal Systems: Applications in Exploration for Porphyry Copper Deposits. Journal of Geochemical Exploration, 204: 240–255. https://doi.org/10.1016/j.gexplo.2019.06.002 |
Burisch, M., Walter, B. F., Wälle, M., et al., 2016. Tracing Fluid Migration Pathways in the Root Zone below Unconformity-Related Hydrothermal Veins: Insights from Trace Element Systematics of Individual Fluid Inclusions. Chemical Geology, 429: 44–50. https://doi.org/10.1016/j.chemgeo.2016.03.004 |
Cooke, D. R., Deyell, C. L., Waters, P. J., et al., 2011. Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines. Economic Geology, 106(8): 1399–1424. https://doi.org/10.2113/econgeo.106.8.1399 |
Deng, J., Wang, Q. F., Sun, X., et al., 2022. Tibetan Ore Deposits: A Conjunction of Accretionary Orogeny and Continental Collision. Earth-Science Reviews, 235: 104245. https://doi.org/10.1016/j.earscirev.2022.104245 |
Gao, X., Zhou, Z. H., Breiter, K., et al., 2019. Ore-Formation Mechanism of the Weilasituo Tin-Polymetallic Deposit, NE China: Constraints from Bulk-Rock and Mica Chemistry, He-Ar Isotopes, and Re-Os Dating. Ore Geology Reviews, 109: 163–183. https://doi.org/10.1016/j.oregeorev.2019.04.007 |
Grondahl, C., Zajacz, Z., 2017. Magmatic Controls on the Genesis of Porphyry Cu-Mo-Au Deposits: The Bingham Canyon Example. Earth and Planetary Science Letters, 480: 53–65. https://doi.org/10.1016/j.epsl.2017.09.036 |
Groves, D. I., Goldfarb, R. J., Santosh, M., 2016. The Conjunction of Factors that Lead to Formation of Giant Gold Provinces and Deposits in Non-Arc Settings. Geoscience Frontiers, 7(3): 303–314. https://doi.org/10.1016/j.gsf.2015.07.001 |
Halley, S., 2020. Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 115(3): 489–503. https://doi.org/10.5382/econgeo.4722 |
Hedenquist, J. W., Arribas, A., Reynolds, T. J., 1998. Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 93(4): 373–404. https://doi.org/10.2113/gsecongeo.93.4.373 |
Hui, K. X., Qin, K. Z., Li, Z. Z., et al., 2021. The Linkage between the Jiawula-Chaganbulagen Ag-Pb-Zn and Adjacent Porphyry Mo-Cu Mineralization, Inner Mongolia, Northeast China. Ore Geology Reviews, 134: 104153. https://doi.org/10.1016/j.oregeorev.2021.104153 |
Hutchison, W., Finch, A. A., Boyce, A. J., 2020. The Sulfur Isotope Evolution of Magmatic-Hydrothermal Fluids: Insights into Ore-Forming Processes. Geochimica et Cosmochimica Acta, 288: 176–198. https://doi.org/10.1016/j.gca.2020.07.042 |
Jia, L., Wu, C. Z., Lei, R. X., et al., 2024. Geochronology and Geochemistry of Zircon and Columbite-Tantalite Group Minerals from the Weilasituo Sn-Polymetallic Deposit, Northeastern China: Implications for the Relationship between Mineralization and the Magmatic-Hydrothermal Transition. Ore Geology Reviews, 168: 106047. https://doi.org/10.1016/j.oregeorev.2024.106047 |
Kaszuba, J., Yardley, B., Andreani, M., 2013. Experimental Perspectives of Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions. 77(1): 153–188. https://doi.org/10.2138/rmg.2013.77.5 |
Kouzmanov, K., Pokrovski, G. S., 2012. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems. Economic Geology Special Publications, 16: 573–618. https://doi.org/10.5382/sp.16.22 |
Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402: 105756. https://doi.org/10.1016/j.lithos.2020.105756 |
Liu, X. C., Yu, P. P., Xiao, C. H., 2023. Tin Transport and Cassiterite Precipitation from Hydrothermal Fluids. Geoscience Frontiers, 14(6): 101624. https://doi.org/10.1016/j.gsf.2023.101624 |
Liu, Y. F., Jiang, S. H., Bagas, L., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75: 150–173. https://doi.org/10.1016/j.oregeorev.2015.12.006 |
Ouyang, H. G., Mao, J. W., Santosh, M., et al., 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag Vein Deposit in the Southern Great Xing'an Range, Northeast China: Fluid Inclusions, H, O, S, Pb Isotope Geochemistry and Genetic Implications. Ore Geology Reviews, 56: 503–515. https://doi.org/10.1016/j.oregeorev.2013.06.015 |
Pirajno, F., 2008. Hydrothermal Processes and Mineral Systems. Springer, Dordrecht |
Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006 |
Seedorff, E., Barton, M. D., Stavast, W. J. A., et al., 2008. Root Zones of Porphyry Systems: Extending the Porphyry Model to Depth. Economic Geology, 103(5): 939–956. https://doi.org/10.2113/gsecongeo.103.5.939 |
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3 |
Song, K. R., Tang, L., Zhang, S. T., et al., 2019. Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China: Constraints from in-situ Sulfur Isotope and Trace Element Geochemistry of Pyrite. Geoscience Frontiers, 10(5): 1863–1877. https://doi.org/10.1016/j.gsf.2019.02.004 |
Tauson, V. L., Lipko, S. V., Smagunov, N. V., et al., 2018. Distribution and Segregation of Trace Elements during the Growth of Ore Mineral Crystals in Hydrothermal Systems: Geochemical and Mineralogical Implications. Russian Geology and Geophysics, 59(12): 1718–1732. https://doi.org/10.1016/j.rgg.2018.12.013 |
Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021 |
Wang, X., Wang, K. Y., Ge, W. C., et al., 2023. Fluid Evolution and Ore Genesis of the Weilasituo Li-Sn-Cu-Zn Polymetallic Deposit in Inner Mongolia: Evidence from Fluid Inclusion and C-H-O-Li Isotopes. Ore Geology Reviews, 163: 105750. https://doi.org/10.1016/j.oregeorev.2023.105750 |
Wu, J. C., Zhai, D. G., Zhao, Q. Q., et al., 2023. In situ Trace Element Compositions of Sulfides Constraining the Genesis of the Worldclass Shuangjianzishan Ag-Pb-Zn Deposit, NE China. Ore Geology Reviews, 162: 105675. https://doi.org/10.1016/j.oregeorev.2023.105675 |
Yuan, S. D., Williams-Jones, A. E., Mao, J. W., et al., 2018. The Origin of the Zhangjialong Tungsten Deposit, South China: Implications for W-Sn Mineralization in Large Granite Batholiths. Economic Geology, 113(5): 1193–1208. https://doi.org/10.5382/econgeo.2018.4587 |
Zhai, D. G., 2023. Fluid-Rock Interactions Leading to the Formation of the Epithermal Ag-Pb-Zn Veins: A Perspective of Thermodynamic Modeling. Fundamental Research, 3(4): 570–578. https://doi.org/10.1016/j.fmre.2022.03.004 |
Zhai, D. G., Liu, J. J., Wang, J. P., et al., 2013. Fluid Evolution of the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia: Mineralogical, Fluid Inclusion, and Stable Isotopic Evidence. International Geology Review, 55(2): 204–224. https://doi.org/10.1080/00206814.2012.692905 |
Zhai, D. G., Liu, J. J., Cook, N. J., et al., 2019. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1): 47–66. https://doi.org/10.1007/s00126-018-0804-6 |
Zhai, D. G., Williams-Jones, A. E., Liu, J. J., et al., 2020. The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China. Economic Geology, 115(1): 101–128. https://doi.org/10.5382/econgeo.4695 |
Zhai, D. G., Liu, J. J., Zhang, A. L., et al., 2017. U-Pb, Re-Os, and 40Ar/39Ar Geochronology of Porphyry Sn ± Cu ± Mo and Polymetallic (Ag-Pb-Zn-Cu) Vein Mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for Discrete Mineralization Events. Economic Geology, 112(8): 2041–2059. https://doi.org/10.5382/econgeo.2017.4540 |
Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014. Origin of Oscillatory Zoned Garnets from the Xieertala Fe-Zn Skarn Deposit, Northern China: In situ LA-ICP-MS Evidence. Lithos, 190/191: 279–291. https://doi.org/10.1016/j.lithos.2013.12.017 |
Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2018a. A Magmatic-Hydrothermal Origin for Ag-Pb-Zn Vein Formation at the Bianjiadayuan Deposit, Inner Mongolia, NE China: Evidences from Fluid Inclusion, Stable (C-H-O) and Noble Gas Isotope Studies. Ore Geology Reviews, 101: 1–16. https://doi.org/10.1016/j.oregeorev.2018.07.005 |
Zhai, D. G., Williams-Jones, A. E., Liu, J. J., et al., 2018b. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Economic Geology, 113(6): 1359–1382. https://doi.org/10.5382/econgeo.2018.4595 |
Zhang, H. Y., Zhai, D. G., Liu, J. J., et al., 2019. Fluid Inclusion and Stable (H-O-C) Isotope Studies of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 115: 103170. https://doi.org/10.1016/j.oregeorev.2019.103170 |
Zhang, H. Y., 2020. The Studies on High-Intermediate Temperature Sn-Rb-Li-W and Intermediate-Low Temperature Cu-Zn-Ag Metallogenic Ore System at Weilasituo, Inner Mongolia, NE China: [Dissertation]. China University of Geosciences (Beijing), Beijing. 1–141 (in Chinese with English Abstract) |
Zhao, P. L., Yuan, S. D., Williams-Jones, A. E., et al., 2022. Temporal Separation of W and Sn Mineralization by Temperature-Controlled Incongruent Melting of a Single Protolith: Evidence from the Wangxianling Area, Nanling Region, South China. Economic Geology, 117(3): 667–682. https://doi.org/10.5382/econgeo.4902 |
Zhao, Q. Q., Zhai, D. G., Dou, M. X., et al., 2023. Origin of Ag-Pb-Zn Mineralization at Huanaote, Inner Mongolia, NE China: Evidence from Fluid Inclusion, H-O-S-Pb and Noble Gas Isotope Studies. Ore Geology Reviews, 161: 105656. https://doi.org/10.1016/j.oregeorev.2023.105656 |
Zhao, Q. Q., Zhai, D. G., Williams-Jones, A. E., et al., 2024. A Late Mesozoic Cu Mineralizing Event in the Eastern Central Asian Orogenic Belt, NE China: Implications from Geology and Geochronology of the Newly Discovered Zhalageamu Deposit. GSA Bulletin, 136(3/4): 1171–1184. https://doi.org/10.1130/b36804.1 |
Zheng, Y., 2022. Large-Scaled Structure-Alteration-Mineralization Mapping of the Hydrothermal Deposits: Basic Principle and Precautions. Earth Science, 47(10): 3603–3615. https://doi.org/10.3799/dqkx.2022.295 (in Chinese with English Abstract) |
Zhu, K. Y., Jiang, S. Y., Su, H. M., et al., 2021. In Situ Geochemical Analysis of Multiple Generations of Sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn Ore Field (Inner Mongolia, Northeastern China): Implication for Critical Metal Enrichment and Ore-Forming Process. Ore Geology Reviews, 139: 104473. https://doi.org/10.1016/j.oregeorev.2021.104473 |