Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 16 Issue 1
Mar 2005
Turn off MathJax
Article Contents
Zhihua Ouyang, Derek Elsworth, Jianlong Sheng. Theory of Volumetric Moving Dislocation in Poroelastic Halfspace and Characterization of Magma Intrusion Events. Journal of Earth Science, 2005, 16(1): 58-65.
Citation: Zhihua Ouyang, Derek Elsworth, Jianlong Sheng. Theory of Volumetric Moving Dislocation in Poroelastic Halfspace and Characterization of Magma Intrusion Events. Journal of Earth Science, 2005, 16(1): 58-65.

Theory of Volumetric Moving Dislocation in Poroelastic Halfspace and Characterization of Magma Intrusion Events

  • Received Date: 30 Jun 2004
  • Accepted Date: 18 Dec 2004
  • The undrained change in pore fluid pressure that accompanies dike intrusion may be conveniently represented as a moving volumetric dislocation. The concept of a dilation center was developed to represent the field of undrained pressure change in a saturated linear elastic medium. Since instantaneous pore fluid pressures can be developed to a considerable distance from the dislocation, monitoring the rate of pressure generation and subsequent pressure dissipation in a fully coupled manner enables certain characteristics of the resulting dislocation to be defined. The principal focus of this study is the application of dislocation-based methods to analyze the behavior of the fluid pressure response induced by intrusive dislocations in a semi-infinite space, such as dike intrusion, hydraulic fracturing and piezometer insertion. Partially drained pore pressures result from the isothermal introduction of volumetric moving pencil-like dislocations described as analogs to moving point dislocation within a semi-infinite saturated elastic medium. To represent behavior within the halfspace, an image dislocation is positioned under the moving coordinate frame fixed to the front of the primary moving dislocation, to yield an approximate solution for pore pressure for constant fluid pressure conditions. Induced pore pressures are concisely described under a minimum set of dimensionless parameter groupings representing propagation velocity, and relative geometry. Charts defining induced pore fluid pressure at a static measuring point provide a meaningful tool for determining unknown parameters in data reduction. Two intrusive events at Krafla, Iceland are examined using the type curve matching techniques. Predicted parameters agree favorably with field data.

     

  • loading
  • Bodvarsson, G. S., Benson, S. M., Sigurdsson, O., et al., 1984. The Krafla Geothermal Field, Iceland, 1, Analysis of Well Test Data. Water Resour. Res., 20(11): 1515-1530 doi: 10.1029/WR020i011p01515
    Brandsdottir, B., Einarsson, P., 1979. Seismic Activity Associated with the September 1977 Deflation of the Krafla Central Volcano in North-Eastern Iceland. J. Volcanol. and Geotherm. Res., 6: 197-212 doi: 10.1016/0377-0273(79)90001-5
    Cleary, M. P., 1977. Fundamental Solutions for a Fluid-Saturated Porous Solid. Int. J. Solids Struct., 13: 785-806 doi: 10.1016/0020-7683(77)90065-8
    Elsworth, D., 1992. Pore-Pressure Response due to Penetration through Layered Media. Int. Journal for Num. & Anal. Methods in Geomech., 16: 45-64
    Elsworth, D., Day, S. J., 1999. Flank Collapse Triggered by Intrusion: The Canarian and Cape Verde Archipelagoes. J. Volcanol. & Geotherm. Res., 95(1-4): 323-340
    Elsworth, D., Voight, B., 1995. Dike Intrusion as a Trigger for Large Earthquakes and the Failure of Volcano Flanks. J. Geophys. Res., 100(B4): 6005-6024 doi: 10.1029/94JB02884
    Ewart, J. A., Voight, B., Bjomsson, A., 1990. Dynamics of Krafla Caldera, North Iceland: 1975-1985. In: Ryan, M. P., ed., Magma Transport and Storage. John Wiley, New York. 225-276
    Ingraffea, A. R., 1987. Theory of Crack Initiation and Propagation in Rock. In: Atkinson, B. K., ed., Fracture Mechanics of Rock. Academic Press, San Diego. 71-110
    Lister, J. R., 1990. Buoyancy Driven Fluid Fracture: The Effects of Material Toughness and of Low Viscosity Precursors. J. Fluid Mechs., 210: 263-280 doi: 10.1017/S0022112090001288
    Lister, J. R., Kerr, R. C., 1991. Fluid-Mechanical Models of Crack Propagation and Their Application to Magma-Transport in Dykes. J. Geophys. Res., 96: 10049-10077 doi: 10.1029/91JB00600
    Muller, J. R., Ito, G., Martel, S. J., 2001. Effects of Volcano Loading on Dike Propagation in an Elastic Half-Space. J. Geophys. Res., 106(B6): 11101-11113 doi: 10.1029/2000JB900461
    Parsons, T., Sleep, N. H., Thompson, G. A., 1992. Host Rock Rheology Controls on the Emplacement of a Tabular Intrusion: Implications for Underplating of Extending Crust. Tectonics, 11: 1348-1356 doi: 10.1029/92TC01105
    Rice, J. R., Cleary, M. P., 1976. Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media with Compressible Constituents. Rev. Geophys., 14(2): 227-241 doi: 10.1029/RG014i002p00227
    Rubin, A. M., 1993. Dikes vs. Diapirs in Viscoelastic Rock. Earth Planet. Sci. Lett., 119: 641-659 doi: 10.1016/0012-821X(93)90069-L
    Ryan, M. P., 1987. Neutral Buoyancy and the Mechanical Evolution of Magmatic Systems. In: Mysen, B. O., ed., Magmatic Processes: Physiochemical Principles. Geochem. Soc. Spec. Publ., 1: 259-287
    Saemundsson, K., 1991. Jardfraedi Kroflukerfisins in Nattura Myvatns. Hid Islenska Natturufaedifelag, Reykjavik. 24-95
    Sigurdsson, O., 1982. Analysis of Pressure Pulses Resulting from Volcanic Activity in the Vicinity of a Well: [Dissertation]. University of Oklahoma, Noman, Oklahoma, USA. 75
    Skempton, A. W., 1954. The Pore-Pressure Coefficients A and B. Geotechnique, 4: 143-147 doi: 10.1680/geot.1954.4.4.143
    Watanabe, T., Koyaguchi, T., Seno, T., 1999. Tectonic Stress Controls on Ascent and Emplacement of Magmas. J. Volc. and Geophys. Res., 91: 65-78
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(550) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return