Citation: | Shiming Wan, Anchun Li, Kehui Xu, Xueming Yin. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene. Journal of Earth Science, 2008, 19(1): 23-37. |
Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.
An Z. S., Kutzbach J. E., Prell W. L., et al. 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411: 62–66 doi: 10.1038/35075035 |
An Z. S., Wang S. M., Wu X. H., et al. 1998. Eolian Evidence from the Chinese Loess Plateau: The Onset of the Late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau Uplift Forcing. Science in China (Series D), 28(6): 481–490 (in Chinese) |
Biscaye P. E. . 1965. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin, 76: 803–831 doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 |
Boulay S., Colin C., Trentesaux A., et al. 2005. Sediment Sources and East Asian Monsoon Intensity over the Last 450 ky: Mineralogical and Geochemical Investigations on South China Sea Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228: 260–277 doi: 10.1016/j.palaeo.2005.06.005 |
Briais A., Patriat P., Tapponnier P. . 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of SE Asia. Journal of Geophysical Research, 98(B4): 6299–6328 doi: 10.1029/92JB02280 |
Chen M. H., Wang R. J., Yang L. H., et al. 2003. Development of East Asian Summer Monsoon Environments in the Late Miocene: Radiolarian Evidence from Site 1143 of ODP Leg 184. Marine Geology, 201: 169–177 doi: 10.1016/S0025-3227(03)00215-9 |
Cheng X. R., Zhao Q. H., Wang J., et al. 2004. Data Report: Stable Isotopes from Sites 1147 and 1148. In: Prell W. L., ed., Proceedings of The Ocean Drilling Program, Scientific Results, 184: 1–12. Http://www-Odp.Tamu.Edu/Publications/184_SR/VOLUME/CHAPTERS/223.PDF |
Clift P., Lee J. I., Clark M. K., et al. 2002. Erosional Response of South China to Arc Rifting and Monsoonal Strengthening: A Record from the South China Sea. Marine Geology, 184: 207–226 doi: 10.1016/S0025-3227(01)00301-2 |
Copeland P. . 1997. The When and Where of the Growth of the Himalaya and the Tibetan Plateau. In: Ruddiman W. F., ed., Tectonic Uplift and Climate Change. Plenum Press, New York. 19–40 |
Ding Z. L., Xiong S. F., Sun J. M., et al. 1999. Pedostratigraphy and Paleomagnetism of a ~7.0 Ma Eolian Loess-Red Clay Sequences at Lingtai, Loess Plateau, North-Central China and Implications for Paleomonsoon Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 152: 49–66 |
Ehrmann W. . 1998. Implications of Late Eocene to Early Miocene Clay Mineral Assemblages in McMurdo Sound (Ross Sea, Antarctica) on Paleoclimate and Ice Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139: 213–231 doi: 10.1016/S0031-0182(97)00138-7 |
Fang X. M., Xi X. X., Li J. J., et al. 1997. Discovery of the Late Miocene Aridity Events in West China and Its Significance. Chinese Science Bulletin, 42: 2521–2524 (in Chinese) doi: 10.1360/csb1997-42-23-2521 |
Guo Z. T., Ruddiman W. F., Hao Q. Z., et al. 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416: 159–163 doi: 10.1038/416159a |
Guong Z. S., Jin Q. H., Qiu Z. J., et al. 1989. Geology, Tectonics and Evolution of the Pearl River Mouth Basin. In: Zhu X., ed., Chinese Sedimentary Basins. Elsevier Sci. Publ., Amsterdam, NLD. 181–196 |
Hall R. . 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20: 353–431 doi: 10.1016/S1367-9120(01)00069-4 |
Harris N. . 2006. The Elevation History of the Tibetan Plateau and Its Implications for the Asian Monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4–15 doi: 10.1016/j.palaeo.2006.07.009 |
He L. B., Liu Q. Y. . 1997. Chemical Character of Clay Minerals in the Yellow River and Yangtze River. Chinese Science Bulletin, 42(7): 730–734 (in Chinese) doi: 10.1360/csb1997-42-7-730 |
Jeong G. Y., Yoon H. I., Lee S. Y. . 2004. Chemistry and Microstructures of Clay Particles in Smectite-Rich Shelf Sediments, South Shetland Islands, Antarctica. Marine Geology, 209: 19–30 doi: 10.1016/j.margeo.2004.05.027 |
Jia G. D., Peng P. A., Zhao Q. H., et al. 2003. Changes in Terrestrial Ecosystem since 30 Ma in East Asia: Stable Isotope Evidence from Black Carbon in the South China Sea. Geology, 31: 1093–1096 |
Kroon D., Steens T. N. F., Troelstra S. R. . 1991. Onset of Monsoonal Related Upwelling in the Western Arabian Sea as Revealed by Planktonic Foraminifers. In: Prell W. L, Niitsuma N., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 117: 257–263 |
Lee T. Y., Lawver L. A. . 1994. Cenozoic Plate Reconstruction of the South China Sea Region. Tectonophysics, 235: 149–180 doi: 10.1016/0040-1951(94)90022-1 |
Li A. C. . 1997. A Study on Fluxes and Composition Characteristics of Mineral Aerosols from the Low Atmosphere of the Eastern China Seas: [Dissertation]. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. 53 (in Chinese with English Abstract) |
Li X. H., Wei G. J., Shao L., et al. 2003. Geochemical and Nd Isotopic Variations in Sediments of the South China Sea: A Response to Cenozoic Tectonism in SE Asia. Earth and Planetary Science Letters, 211: 207–220 doi: 10.1016/S0012-821X(03)00229-2 |
Liu Z. F., Trentesaux A., Clemens S. C., et al. 2003. Clay Mineral Assemblages in the Northern South China Sea: Implications for East Asian Monsoon Evolution over the Past 2 Million Years. Marine Geology, 201: 133–146 doi: 10.1016/S0025-3227(03)00213-5 |
Lü, L. Q., Fang X. M., Mason J. A., et al. 2001. The Evolution of Coupling of Asian Winter Monsoon and High Latitude Climate of Northern Hemisphere—Grain Evidence from 8.1 Ma Loess-Red Clay Sequence on the Chinese Central Loess Plateau. Science in China (Series D), 44(S1): 185–191 |
Lüdmann, T., Wong H. K., Wang P. X. . 2001. Plio–Quaternary Sedimentation Processes and Neotectonics of the Northern Continental Margin of the South China Sea. Marine Geology, 172: 331–358 doi: 10.1016/S0025-3227(00)00129-8 |
Ma Y. Z., Li J. J., Fang X. M. . 1998. Vegetation and Climate Evolution from 30.6–5.0 Ma Recorded in Red Beds at Linxia. Chinese Science Bulletin, 43: 301–304 (in Chinese) |
Milliman J. D., Kao S. J. . 2005. Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese Rivers. Journal of Geology, 113: 503–516 doi: 10.1086/431906 |
Milliman J. D., Meade R. H. . 1983. World Wide Delivery of River Sediment to the Oceans. Journal of Geology, 91: 1–21 doi: 10.1086/628741 |
Moore D. M., Reynolds R. C. Jr., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, United Kingdom |
Petschick R., Kuhn G., Gingele F. X. . 1996. Clay Mineral Distribution in Surface Sediments of the South Atlantic: Sources, Transport, and Relation to Oceanography. Marine Geology, 130: 203–229 doi: 10.1016/0025-3227(95)00148-4 |
Prell W. L., Murray D. W., Clemens S. C. . 1992. Evolution and Variability of the Indian Ocean Summer Monsoon: Evidence from the Western Arabian Sea Drilling Program, In: Duncan R. A., Rea D. K., Kidd R. B., et al. eds., Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph, 70: 447–469 |
Quade J., Cerling T. E., Bowman J. R. . 1989. Development of Asian Monsoon Revealed by Marked Ecological Shift during the Latest Miocene in Northern Pakistan. Nature, 342: 163–166 doi: 10.1038/342163a0 |
Rea D. K., Snoeckx H., Joseph L. H. . 1998. Late Cenozoic Eolian Deposition in the North Pacific: Asian Drying, Tibetan Uplift, and Cooling of the Northern Hemisphere. Paleoceanography, 13: 215–224 doi: 10.1029/98PA00123 |
Ruddiman W. F., Kutzbach J. E. . 1989. Forcing of Late Cenozoic Northern Hemisphere Climate by Plateau Uplift in Southern Asia and the American West. Journal of Geophysical Research, 94: 18409–18427 doi: 10.1029/JD094iD15p18409 |
Shao L., Li X. H., Wei G. J., et al. 2001. Provenance of a Prominent Sediment Drift on the Northern Slope of the South China Sea. Science in China (Series D), 44: 919–925 doi: 10.1007/BF02907084 |
Shi X. F., Chen L. R., Li K. Y., et al. 1995. Study on Minerageny of the Clay Sediment in the West of Philippine Sea. Marine Geology & Quaternary Geology, 15(2): 61–72 (in Chinese with English Abstract) |
Sibuet J. C., Hsu S. K. . 2004. How Was Taiwan Created? Tectonophysics, 379: 159–181 doi: 10.1016/j.tecto.2003.10.022 |
Sun X. J., Wang P. X. . 2005. How Old is the Asian Monsoon System?—Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222: 181–222 doi: 10.1016/j.palaeo.2005.03.005 |
Taylor B., Hayes D. E. . 1983. Origin and History of the South China Sea Basin. In: Hayes D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, 2. Geophysical Monograph, 27: 23–56 |
Teng L. S. . 1990. Geotectonic Evolution of Late Cenozoic Arc–Continent Collision in Taiwan. Tectonophysics, 183: 57–76 doi: 10.1016/0040-1951(90)90188-E |
Tian J., Wang P. X., Chen X. R. . 2004. Development of the East Asian Monsoon and Northern Hemisphere Glaciation: Oxygen Isotope Records from the South China Sea. Quaternary Science Reviews, 23: 2007–2016 doi: 10.1016/j.quascirev.2004.02.013 |
Wan S. M., Li A. C., Clift P. D., et al. 2006. Development of the East Asian Summer Monsoon: Evidence from the Sediment Record in the South China Sea since 8.5 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 139–159 doi: 10.1016/j.palaeo.2006.06.013 |
Wan S. M., Li A. C., Clift P. D., et al. 2007. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 561–582 doi: 10.1016/j.palaeo.2007.07.009 |
Wang P. X., Clemens S., Beaufort L., et al. 2005. Evolution and Variability of the Asian Monsoon System: State of the Art and Outstanding Issues. Quaternary Science Reviews, 24: 595–629 doi: 10.1016/j.quascirev.2004.10.002 |
Wang P. X., Prell W. L., Blum P., et al. 2000. Proceedings of the Ocean Drilling Program, Scientific Results, 184 [CD-ROM]. Ocean Drilling Program, Texas A & M University, College Station, TX 77845-9547, USA. 1–77 |
Webster P. J., Magana V. O., Palmer T. N., et al. 1998. Monsoons: Processes, Predictability, and the Prospects for Prediction. In: The TOGA Decade. Journal of Geophysical Research, 103(C7): 14451–14510 |
Wehausen R., Brumsack H. J. . 2002. Astronomical Forcing of the East Asian Monsoon Mirrored by the Composition of Pliocene South China Sea Sediments. Earth and Planetary Science Letters, 201: 621–636 doi: 10.1016/S0012-821X(02)00746-X |
Zachos J., Pagani M., Sloan L., et al. 2001, Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292: 686–693 doi: 10.1126/science.1059412 |
Zhang P. Z., Molnar P., Downs W. R. . 2001. Increased Sedimentation Rates and Grain Sizes 2–4 Myr ago due to the Influence of Climate Change on Erosion Rates. Nature, 410: 891–897 doi: 10.1038/35073504 |
Zheng H. B., Powell C. M., Rea D. K., et al. 2004. Late Miocene and Mid-Pliocene Enhancement of the East Asian Monsoon as Viewed from the Land and Sea. Global and Planetary Change, 41: 147–155 doi: 10.1016/j.gloplacha.2004.01.003 |