Citation: | R Tolosana-Delgado, V Pawlowsky-Glahn, J J Egozcue. Simplicial Indicator Kriging. Journal of Earth Science, 2008, 19(1): 65-71. |
Indicator kriging (IK) is a spatial interpolation technique devised for estimating a conditional cumulative distribution function at an unsampled location. The result is a discrete approximation, and its corresponding estimated probability density function can be viewed as a composition in the simplex. This fact suggested a compositional approach to IK which, by construction, avoids all its standard drawbacks (negative predictions, not-ordered or larger than one). Here, a simple algorithm to develop the procedure is presented.
Aitchison, J., 1986. The Statistical Analysis of Compositional Data: Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London, UK (Reprinted in 2003 with Additional Material by the Blackburn Press) |
Billheimer, D., Guttorp, P., Fagan, W., 2001. Statistical Interpretation of Species Composition. Journal of the American Statistical Association, 96: 1205–1214 doi: 10.1198/016214501753381850 |
Bogaert, P., 1999. On the Optimal Estimation of the Cumulative Distribution Function in Presence of Spatial Dependence. Mathematical Geology, 31(2): 213–239 |
Bogaert, P., 2002. Spatial Prediction of Categorical Variables: The Bayesian Maximum Entropy Approach. Stochastic Environmental Research and Risk Assessment, 16: 425–448 doi: 10.1007/s00477-002-0114-4 |
Carle, S., Fogg, G., 1996. Transition Probability-Based Indicator Geostatistics. Math. Geol. , 28: 453–476 doi: 10.1007/BF02083656 |
Carr, J. R., 1994. Order Relation Correction Experiments for Probability Kriging. Math. Geol. , 26: 605–621 doi: 10.1007/BF02089244 |
Carr, J. R., Mao, N. H., 1993. A General-Form of Probability Kriging for Estimation of the Indicator and Uniform Transforms. Math. Geol. , 25: 425–438 doi: 10.1007/BF00894777 |
Christakos, G., 1990. A Bayesian/Maximum Entropy View to the Spatial Estimation Problem. Math. Geol. , 22: 763–777 doi: 10.1007/BF00890661 |
Eaton, M. L., 1983. Multivariate Statistics: A Vector Space Approach. John Wiley & Sons, New York |
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. , 35: 279–300 doi: 10.1023/A:1023818214614 |
Journel, A. G., 1983. Nonparametric Estimation of Spatial Distributions. Math. Geol. , 15: 445–468 doi: 10.1007/BF01031292 |
Juang, K. W., Lee, D. Y., Hhsiao, C. K., 1998. Kriging with Cumulative Distribution Function of Order Statistics for Delineation of Heavy-Metal Contaminated Soils. Soil Science, 163: 797–804 doi: 10.1097/00010694-199810000-00003 |
Martín-Fernández, J. A., Barceló-Vidal, C., Pawlowsky-Glahn, V., 2000. Zero Replacement in Compositional Data Sets. In: Kiers, H., Rasson, J., Groenen, P., et al., eds., Studies in Classification, Data Analysis, and Knowledge Organization—Proceedings of the 7th Conference of the International Federation of Classification Societies (IFCS'2000). Springer Verlag, Berlin. 155–160 |
Mateu-Figueras, G., Pawlowsky-Glahn, V., Barceló-Vidal, C., 2003. Distributions on the Simplex. In: Thió-Henestrosa, S., Martín-Fernández, J. A., eds., The First Compositional Data Analysis Workshop, Proceedings of CODAWORK'03, October 15–17, Universitat de Girona, ISBN 84-8458-111-X |
Matheron, G., 1976. A Simple Substitute for the Conditional Expectation: The Disjunctive Kriging. In: Guarascio, M., David, M., Huijbregts, C., eds., Advanced Geostatistics in the Mining Industry. D. Reidel Publishing Company, Dordrecht. 221–236 |
Pardo-Igúzquiza, E., Dowd, P. A., 2005. Multiple Indicator Cokriging with Application to Optimal Sampling for Environmental Monitoring. Computers and Geosciences, 31: 1–13 doi: 10.1016/j.cageo.2004.08.006 |
Pawlowsky, V., 1989. Cokriging of Regionalized Compositions. Math. Geol. , 21(5): 513–521 doi: 10.1007/BF00894666 |
Pawlowsky-Glahn, V., 2003. Statistical Modelling on Coordinates. In: Thió-Henestrosa, S., Martín-Fernández, J. A., eds., The First Compositional Data Analysis Workshop, Proceedings of CODAWORK'03, October 15–17, Universitat de Girona, ISBN 84-8458-111-X |
Pawlowsky-Glahn, V., Egozcue, J. J., 2001. Geometric Approach to Statistical Analysis on the Simplex. Stochastic Environmental Research and Risk Assessment, 15: 384–398 doi: 10.1007/s004770100077 |
Pawlowsky-Glahn, V., Egozcue, J. J., 2002. BLU Estimators and Compositional Data. Math. Geol. , 34: 259–274 doi: 10.1023/A:1014890722372 |
Pawlowsky-Glahn, V., Olea, R., 2004. Geostatistical Analysis of Compositional Data. Oxford University Press, Oxford |
Simonoff, J., 2003. Analyzing Categorical Data. Springer Verlag, New York. 248–250 |
Sullivan, J., 1984. Conditional Recovery Estimation through Probability Kriging—Theory and Practice. In: Geostatistics for Natural Resources Characterization. NATO ASI Series, Series C: Mathematical and Physical Sciences, 122: 365–384 |
Suro-Pérez, V., Journel, A. G., 1991. Indicator Principal Component Kriging. Math. Geol. , 23(5): 759–788 doi: 10.1007/BF02082535 |
Tolosana-Delgado, R., 2006. Geostatistics for Constrained Variables: Positive Data, Compositions and Probabilities—Application to Environmental Hazard Monitoring: [Dissertation]. Medi Ambient-Física i Tecnologia Ambientals, Universitat de Girona |
Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J. J., 2008. Indicator Kriging without Order Relation Violations. Math. Geol. (in Press) |
Vargas-Guzmán, J. A., Dimitrakopoulos, R., 2003. Successive Nonparametric Estimation of Conditional Distributions. Math. Geol. , 35: 39–52 doi: 10.1023/A:1022361028297 |