Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 18 Issue 2
Apr 2007
Turn off MathJax
Article Contents
Qianyu Li, Quanhong Zhao, Guangfa Zhong, Zhimin Jian, Jun Tian, Xinrong Cheng, Pinxian Wang, Muhong Chen. Deepwater Ventilation and Stratification in the Neogene South China Sea. Journal of Earth Science, 2007, 18(2): 95-108.
Citation: Qianyu Li, Quanhong Zhao, Guangfa Zhong, Zhimin Jian, Jun Tian, Xinrong Cheng, Pinxian Wang, Muhong Chen. Deepwater Ventilation and Stratification in the Neogene South China Sea. Journal of Earth Science, 2007, 18(2): 95-108.

Deepwater Ventilation and Stratification in the Neogene South China Sea

Funds:

the National Natural Science Foundation of china 40576031

the National Natural Science Foundation of china 40476030

the National Natural Science Foundation of china 40631007

More Information
  • Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21–17 Ma, 15–10 Ma, and 10–5 Ma with positive red parameter (a*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water (NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma. After 10 Ma, red parameter dropped but stayed higher than the modern value (a*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ13C at ~10 Ma, these parameters may denote a weakening in the control of the SCS deep water by the open ocean. Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16–15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma, followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5–3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40% CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10% CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. Thesubsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ13C to a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.

     

  • loading
  • Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98: 6299–6328 doi: 10.1029/92JB02280
    Broecker, W. S., 1992. The Glacial Word According to Wally. Geological Observatory, Columbia University. Eldigio Press, Lamont-Doherty. 312
    Broecker, W. S., Patzert, W. C., Toggweiler, J. R., et al., 1986. Hydrography, Chemistry, and Radioisotopes in the Southeast Asian Basins. Journal of Geophysical Research, 91: 14345–14354 doi: 10.1029/JC091iC12p14345
    Chao, S. Y., Shaw, P. T., Wu, S. Y., 1996. Deep Water Ventilation in the South China Sea. Deep-Sea Research I, 43(4): 445–467 doi: 10.1016/0967-0637(96)00025-8
    Chen, C. T. A., Hou, W. P., Gamo, T., et al., 2006. Carbonate-Related Parameters of Subsurface Waters in the West Philippine, South China and Sulu Seas. Marine Chemistry, 99: 151–161 doi: 10.1016/j.marchem.2005.05.008
    Chen, C. T. A., Wang, S. L., Wang, B. J., et al., 2001. Nutrient Budgets from the South China Sea Basin. Marine Chemistry, 75: 281–300 doi: 10.1016/S0304-4203(01)00041-X
    Chen, X., Zhao, Q., Jian, Z., 2002. Carbonate Content Changes since the Miocene and Paleoenvironmental Implications, ODP Site 1148, Northern South China Sea. Marine Geology & Quaternary Geology, 22: 69–74 (in Chinese with English Abstract)
    Douglas, R., Woodruff, F., 1981. Deep Sea Benthic Foraminifera. In: Emiliani, C., ed., The Sea 7: The Ocean Lithosphere. J. Wiley & Sons, New York. 1233–1327
    Flower, B. P., Kennett, J. P., 1994. The Middle Miocene Climatic Transition: East Antarctic Ice Sheet Development, Deep Ocean Circulation and Global Carbon Cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 537–555 doi: 10.1016/0031-0182(94)90251-8
    Gong, G. C., Liu, K. K., Liu, C. T., et al., 1992. The Chemical Hydrography of the South China Sea West of Luzon and a Comparison with the West Philippine Sea. TAO, Taiwan, 13(4): 587–602
    Gooday, A. J., 1994. The Biology of Deep-Sea Foraminifera: A Review of Some Advances and Their Applications in Paleoceanology. Palaios, 9: 14–31 doi: 10.2307/3515075
    Gradstein, F., Ogg, J., Smith, A., 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge. 589
    Hodell, D. A., Venz-Curtis, K. A., 2006. Late Neogene History of Deepwater Ventilation in the Southern Ocean. Geochemistry, Geophysics, Geosystems, 7: Q09001, Doi: 10.1029/2005GC001211
    Holbourn, A., Kuhnt, W., Schulz, M., 2004. Orbital Paced Climate Variability during the Middle Miocene: High Resolution Benthic Foraminiferal Stable-Isotopic Records from the Tropical Western Pacific. In: Clift, P., Wang, P., Kuhnt, W., et al., eds., Continent-Ocean Interactions within East Asian Marginal Seas. Geophysical Monograph, 149: 321–337
    Jian, Z., Wang, L., 1997. Late Quaternary Benthic Foraminifera and Deep-Water Paleoceanography in the South China Sea. Marine Micropaleontology, 32: 127–154 doi: 10.1016/S0377-8398(97)00017-0
    Jian, Z., Cheng, X., Zhao, Q., et al., 2001. Oxygen Isotope Stratigraphy and Events in the Northern South China Sea during the Last 6 Million Years. Science in China (Series D), 44(10): 952–960 doi: 10.1007/BF02907088
    Kaiho, K., 1991. Global Changes of Paleocene Aerobic/Anaerobic Benthic Foraminifera and Deep-Sea Circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 83: 65–85 doi: 10.1016/0031-0182(91)90076-4
    Kaiho, K., 1994. Benthic Foraminiferal Dissolved-Oxygen Index and Dissolved-Oxygen Levels in Modern Ocean. Geology, 22: 719–722
    Kuhnt, W., Holbourn, A., Zhao, Q., 2002. The Early History of the South China Sea: Evolution of Oligocene-Miocene Deep Water Environments. Revue De MicropalÉOntologie, 45: 99–159
    Li, L., Qu, T., 2006. Thermohaline Circulation in the Deep South China Sea Basin Inferred from Oxygen Distributions. Journal of Geophysical Research–Oceans, 111: C05017, Doi: 10.1029/2005JC003164
    Li, Q., Wang, P., Chen, M., et al., 2006a. Paleoecological-Environmental Contrasts between the Southern and Northern South China Sea during Mid-Pleistocene Climate Transition. Advance in Earth Sciences, 21: 781–792 (in Chinese with English Abstract)
    Li, Q., Wang, P., Zhao, Q., et al., 2006b. A 33 Ma Lithostratigraphic Record of Tectonic and Paleoceanographic Evolution of the South China Sea. Marine Geology, 230: 217–235 doi: 10.1016/j.margeo.2006.05.006
    Liu, C. T., Liu, R. J., 1988. The Deep Current in the Bashi Channel. Acta Oceanographica Taiwanica, 20: 107–116
    Lyle, M., 2003. Neogene Carbonate Burial in the Pacific Ocean. Paleoceanography, 18: 1059, Doi: 10.1029/2002PA000777
    Miao, Q., Thunell, R. C., 1993. Recent Deep-Sea Benthic Foraminiferal Distribution in the South China Sea. Marine Micropaleontology, 22: 1–32 doi: 10.1016/0377-8398(93)90002-F
    Murray, J. W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific & Technical, UK. 397
    Qu, T., Girton, J. B., Whitehead, J. A., 2006. Deepwater Overflow through Luzon Strait. Journal of Geophysical Research–Oceans, 111: 10.1029/2005JC003139 doi: 10.1029/2005JC003139
    Ramsay, A. T. S., Sykes, T. J. S., Kidd, R. B., 1994. Waxing (and Waning) Lyrical on Hiatuses: Eocene-Quaternary Indian Ocean Hiatuses as Proxy Indicators of Water Mass Production. Paleoceanography, 9: 857–877 doi: 10.1029/94PA01397
    Roth, J. M., Droxler, A. W., Kameo, K., 2000. The Caribbean Carbonate Crash at the Middle to Late Miocene Transition: Linkage to the Establishment of the Modern Global Ocean Conveyor. Proceedings of the Ocean Drilling Program, Scientific Results, 165: 249–273
    Sarnthein, M., Winn, K., 1990. Reconstruction of Low and Middle Latitude Export Productivity, 30 000 Years B.P. to Present: Implication for Control of Global Carbon Reservoirs. In: Schlesinger, M. E., ed., Climate-Ocean Interaction. Kluwer Academic Publishers, Dordrecht. 319–342
    Schmiedl, G., Mackensen, A., Müller, P. J., 1997. Recent Benthic Foraminifera from Eastern South Atlantic Ocean: Dependence on Supply and Water Masses. Marine Micropaleontology, 32: 249–287 doi: 10.1016/S0377-8398(97)00023-6
    Sibuet, J. C., Hsu, S. K., Debayle, E., 2004. Geodynamic Context of the Taiwan Orogene. In: Clift, P., Wang, P., Kuhnt, W., et al., eds., Continent-Ocean Interactions within East Asian Marginal Seas. AGU Geophysical Monograph Series, 149: 127–158
    Tian, J., Pak, D. K., Wang, P., et al., 2006. Late Pliocene Monsoon Linkage in the Tropical South China Sea. Earth and Planetary Science Letters, 252: 72–81 doi: 10.1016/j.epsl.2006.09.028
    Tian, J., Wang, P., Cheng, X., 2004. Development of the East Asian Monsoon and North Hemisphere Glaciation: Oxygen Isotope Records from the South China Sea. Quaternary Science Reviews, 23: 2007–2016 doi: 10.1016/j.quascirev.2004.02.013
    Wang, P., Tian, J., Cheng, X., 2001. Transition of Quaternary Glacial Cyclicity in Deep-Sea Records at Nansha, the South China Sea. Science in China (Series D), 44: 926–933 doi: 10.1007/BF02907085
    Wang, P., Clemens, S., Beaufort, L., et al., 2005. Evolution and Variability of the Asian Monsoon System: Status of the Art and Outstanding Issues. Quaternary Science Reviews, 24: 595–629 doi: 10.1016/j.quascirev.2004.10.002
    Wang, P., Jian, Z., Zhao, Q., et al., 2003a. Evolution of the South China Sea and Monsoon History Revealed in Deep-Sea Records. Chinese Science Bulletin, 48(23): 2549–2561 doi: 10.1360/03wd0156
    Wang, P., Prell, W. L., Blum, P., et al., 2000. Proceedings of the Ocean Drilling Program, Initial Reports 184. College Station, TX (Ocean Drilling Program). 1–103[CD-ROM]
    Wang, P., Zhao, Q., Jian, Z., et al., 2003b. Thirty Million Year Deep-Sea Records in the South China Sea. Chinese Science Bulletin, 48(23): 2524–2535 doi: 10.1007/BF03037016
    Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292: 686–693 doi: 10.1126/science.1059412
    Zhao, Q., Jian, Z., Wang, J., et al., 2001a. Neogene Oxygen Isotopic Stratigraphy, ODP Site 1148, Northern South China Sea. Science in China (Series D), 44(10): 934–942 doi: 10.1007/BF02907086
    Zhao, Q., Wang, P., Cheng, X., et al., 2001b. A Record of Miocene Carbon Excursions in the South China Sea. Science in China (Series D), 44(10): 943–951 doi: 10.1007/BF02907087
    Zhao, Q., Jian, Z., Kuhnt, W., 2007. Site 1148 Benthic Foraminiferal Assemblages and Their Paleoceanographic Implications (Unpublished Manuscript)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(949) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return