Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 18 Issue 2
Apr 2007
Turn off MathJax
Article Contents
Jianbin Zheng, Zhimin Cao, Wei An. Mineral Components, Texture, and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise at 9°–10°N. Journal of Earth Science, 2007, 18(2): 128-134.
Citation: Jianbin Zheng, Zhimin Cao, Wei An. Mineral Components, Texture, and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise at 9°–10°N. Journal of Earth Science, 2007, 18(2): 128-134.

Mineral Components, Texture, and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise at 9°–10°N

Funds:

the National Natural Science Foundation of China 40273025

Key Laboratory of Marine Sedimentology and Environmental Geology, State Oceanic Administration, and National High Technology Research and Development Program of China 2006AA09Z219

More Information
  • Corresponding author: Zheng Jianbin, jbzheng@ouc.edu.cn
  • Received Date: 28 Jan 2007
  • Accepted Date: 22 Mar 2007
  • To characterize the hydrothermal processes of East Pacific rise at 9°–10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope, scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely: (ⅰ) anhydrite + marcasite + pyrite, (ⅱ) pyrite + sphalerite + chalcopyrite, and (ⅲ) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.

     

  • loading
  • Bortnikov, N. S., Genkin, A. D., Dobrovol, M. G., et al., 1991. The Nature of Chalcopyrite Inclusions in Sphalerite: Exsolution, Coprecipitation, or "Disease". Econ. Geol., 86: 1070–1082 doi: 10.2113/gsecongeo.86.5.1070
    Carbotte, S. M., Macdonald, K. C., 1992. East Pacific Rise 8°N–10°30'N: Evolution of Ridge Segments and Discontinuities from Seamarc Ⅱ and Three-Dimensional Magnetic Studies. J. Geophys. Res., 97: 6959–6982 doi: 10.1029/91JB03065
    Christeson, G. L., Kent, G. M., Purdy, G. M., et al., 1996. Extrusive Thickness Variability at the East Pacific Rise, 9°–10°N: Constraints from Seismic Techniques. J. Geophys. Res., 101: 2859–2873 doi: 10.1029/95JB03212
    Christeson, G. L., Purdy, G. M., Fryer, G. L., 1992. Structure of Young Oceanic Crust at the East Pacific Rise near 9°30'N. Geophys. Res. Lett., 19: 1045–1048 doi: 10.1029/91GL00971
    Chu, F. Y., Chen, L. R., 1995. Mineralogy of Hydrothermal Sulfide at Mid-Atlantic Ridge. Marine Geology & Quaternary Geology, 15(2): 73–83 (in Chinese with English Abstract)
    Cochran, J. R., Fornari, D. J., Coakley, B. J., et al., 1996. Nearbottom Underway Gravity Study of the Shallow Structure of the Axis of the East Pacific Rise, 9°31'N and 9°50'N. EOS Trans, AGU, 77(46): F698–F699
    Feely, R. A., Gendron, J. F., Baker, E. T., et al., 1994. Hydrothermal Plumes along the East Pacific Rise, 8°40'–11°50'N: Particle Distribution and Composition. Earth Planet. Sci. Lett., 128: 19–36 doi: 10.1016/0012-821X(94)90023-X
    Fouquet, Y., Stackelberg, U. V., Charlou, J. L., et al., 1993. Metallogenesis in Back-Arc Environments: The Lau Basin Example. Econ. Geol., 88: 2154–2181 doi: 10.2113/gsecongeo.88.8.2154
    Gregg, T. K. P., Fornari, D. J., Perfit, M. R., et al., 1996. Rapid Emplacement of a Mid-Ocean Ridge Lava Flow on the East Pacific Rise at 9°46'–9°51'N. Earth Planet. Sci. Lett., 144(3–4): E1–E7 doi: 10.1016/S0012-821X(96)00179-3
    Haymon, R. M., 1983. The Growth History of Hydrothermal Black Smoker Chimneys. Nature, 301: 695–696 doi: 10.1038/301695a0
    Haymon, R. M., Fornari, D., Edwards, M., et al., 1991. Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09'–54'N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridge. Earth Planet. Sci. Lett., 104: 513–534 doi: 10.1016/0012-821X(91)90226-8
    Haymon, R. M., Fornari, D. J., Lilley, M. D., et al., 1993. Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45–52'N: Direct Submersible Observation of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth and Planetary Science Letters, 119: 85–101 doi: 10.1016/0012-821X(93)90008-W
    Heather, L. H., Anna, M., Robert, M. J., et al., 2004. Testing Biological Control of Colonization by Vestimentiferan Tubeworms at Deep-Sea Hydrothermal Vents (East Pacific Rise, 9°50'N). Deep-Sea Research I, 51: 225–234 doi: 10.1016/j.dsr.2003.10.008
    Herzig, P. M., Hannington, M. D., Fouquet, Y., et al., 1993. Gold-Rich Polymetallic Sulfides from the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific. Econ. Geol., 88: 2182–2200 doi: 10.2113/gsecongeo.88.8.2182
    Hou, Z. Q., Qu, X. M., Xu, M. J., et al., 2001. The Gacun VHMS Deposit in Sichuan Province: From Field Observation to Genetic Model. Mineral Deposits, 20(1): 44–56 (in Chinese with English Abstract)
    Hu, W. X., Zhang, W. L., Hu, S. X., et al., 2000. Study of Chalcopyrite Disease Texture Resulted from Replacement of Chalcopyrite by Sphalerite. Acta Mineralogica Sinica, 20(4): 331–336 (in Chinese with English Abstract)
    Janecky, D. R., Seyfried, W. E., 1984. Formation of Massive Sulfide Deposits on Oceanic Ridge Crests: Incremental Reaction Models for Mixing between Hydrothermal Solutions and Sea Water. Geochim. Cosmochim. Acta, 48: 2723–2738 doi: 10.1016/0016-7037(84)90319-3
    Kojima, S., Sugaki, A., 1985. Phase Relationship in the Cu-Fe-Zn-S System between 500 ℃ and 300 ℃ under Hydrothermal Condition. Econ. Geol., 80: 158–171 doi: 10.2113/gsecongeo.80.1.158
    Kurras, G. J., Fornari, D. J., Edwards, M. H., et al., 2000. Volcanic Morphology of the East Pacific Rise Crest 9°49'–52'N: Implications for Volcanic Emplacement Processes at Fast-Spreading Mid-Ocean Ridges. Marine Geophy. Res., 21 (1): 23–41
    Langmuir, C., Humphris, S., Fornari, D., et al., 1997. Hydrothermal Vents near a Mantle Hotspot: The Lucky Strike Vent Field at 37°N on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 148: 69–91 doi: 10.1016/S0012-821X(97)00027-7
    Li, J. L., Wang, S., 1990. Investigation of a New Exsolved Cu-Fe-S Phase in Abnormal Sphalerite. Acta Geologica Sinica, 3: 201–215 (in Chinese with English Abstract)
    Lupton, J. E., Lilley, M. D., Olson, E., et al., 1991. Gas Chemistry of Vent Fluids from 9–10°N on the East Pacific Rise. EOS, Trans. Am. Geophys., 72: 481
    Lusk, J., Calder, B. O. E., 2004. The Composition of Sphalerite and Associated Sulfides in Reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S Systems at 1 bar and Temperatures between 250 and 535 ℃. Chemical Geology, 203: 319–345 doi: 10.1016/j.chemgeo.2003.10.011
    Münch, U., Blum, N., Halbach, P., 1999. Mineralogical and Geochemical Features of Sulfide Chimneys from the MESO Zone, Central Indian Ridge. Chemical Geology, 155: 29–44 doi: 10.1016/S0009-2541(98)00139-9
    Oosting, S. E., von Damm, K. L., 1996. Bromide/Chloride Fractionation in Seafloor Hydrothermal Fluids from 9–10°N East Pacific Rise. Earth Planet. Sci. Lett., 144: 133–145 doi: 10.1016/0012-821X(96)00149-5
    Shank, T. M., Fornari, D. J., Von Damm, K. L., et al., 1998. Temporal and Spatial Patterns of Biological Community Development at Nascent Deep-Sea Hydrothermal Vents (9°50'N, East Pacific Rise). Deep-Sea Research II, 45: 465–515 doi: 10.1016/S0967-0645(97)00089-1
    Shanks, W. C., Bohlke, J. K., Seal, R. R., et al., 1991. Stable Isotope Studies of Vent Fluids, 9–10°N East Pacific Rise: Water-Rock Interaction and Phase Separation. EOS, Trans. Am. Geophys., 72: 481
    Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. J. Geophys. Res., 100(12): 527–555
    Wiggins, L. B., Craig, J. R., 1980. Reconnaissance of the Cu-Fe-Zn-S System: Sphalerite Phase Relationship. Econ. Geol., 75: 742–751 doi: 10.2113/gsecongeo.75.5.742
    Wu, S. Y., Gao, A. G., Wang, K. Y., et al., 2000. World Seafloor Hydrothermal Sulfide Resources. China Ocean Press, Beijing. 151 (in Chinese)
    Yund, R. A., Kullerud, G., 1966. Thermal Stability of Assemblages in the Cu-Fe-S System. Jour. Petro., 7: 454–488 doi: 10.1093/petrology/7.3.454
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(669) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return