| Citation: | Jianbin Zheng, Zhimin Cao, Wei An. Mineral Components, Texture, and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise at 9°–10°N. Journal of Earth Science, 2007, 18(2): 128-134. |
To characterize the hydrothermal processes of East Pacific rise at 9°–10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope, scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely: (ⅰ) anhydrite + marcasite + pyrite, (ⅱ) pyrite + sphalerite + chalcopyrite, and (ⅲ) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.
| Bortnikov, N. S., Genkin, A. D., Dobrovol, M. G., et al., 1991. The Nature of Chalcopyrite Inclusions in Sphalerite: Exsolution, Coprecipitation, or "Disease". Econ. Geol., 86: 1070–1082 doi: 10.2113/gsecongeo.86.5.1070 |
| Carbotte, S. M., Macdonald, K. C., 1992. East Pacific Rise 8°N–10°30'N: Evolution of Ridge Segments and Discontinuities from Seamarc Ⅱ and Three-Dimensional Magnetic Studies. J. Geophys. Res., 97: 6959–6982 doi: 10.1029/91JB03065 |
| Christeson, G. L., Kent, G. M., Purdy, G. M., et al., 1996. Extrusive Thickness Variability at the East Pacific Rise, 9°–10°N: Constraints from Seismic Techniques. J. Geophys. Res., 101: 2859–2873 doi: 10.1029/95JB03212 |
| Christeson, G. L., Purdy, G. M., Fryer, G. L., 1992. Structure of Young Oceanic Crust at the East Pacific Rise near 9°30'N. Geophys. Res. Lett., 19: 1045–1048 doi: 10.1029/91GL00971 |
| Chu, F. Y., Chen, L. R., 1995. Mineralogy of Hydrothermal Sulfide at Mid-Atlantic Ridge. Marine Geology & Quaternary Geology, 15(2): 73–83 (in Chinese with English Abstract) |
| Cochran, J. R., Fornari, D. J., Coakley, B. J., et al., 1996. Nearbottom Underway Gravity Study of the Shallow Structure of the Axis of the East Pacific Rise, 9°31'N and 9°50'N. EOS Trans, AGU, 77(46): F698–F699 |
| Feely, R. A., Gendron, J. F., Baker, E. T., et al., 1994. Hydrothermal Plumes along the East Pacific Rise, 8°40'–11°50'N: Particle Distribution and Composition. Earth Planet. Sci. Lett., 128: 19–36 doi: 10.1016/0012-821X(94)90023-X |
| Fouquet, Y., Stackelberg, U. V., Charlou, J. L., et al., 1993. Metallogenesis in Back-Arc Environments: The Lau Basin Example. Econ. Geol., 88: 2154–2181 doi: 10.2113/gsecongeo.88.8.2154 |
| Gregg, T. K. P., Fornari, D. J., Perfit, M. R., et al., 1996. Rapid Emplacement of a Mid-Ocean Ridge Lava Flow on the East Pacific Rise at 9°46'–9°51'N. Earth Planet. Sci. Lett., 144(3–4): E1–E7 doi: 10.1016/S0012-821X(96)00179-3 |
| Haymon, R. M., 1983. The Growth History of Hydrothermal Black Smoker Chimneys. Nature, 301: 695–696 doi: 10.1038/301695a0 |
| Haymon, R. M., Fornari, D., Edwards, M., et al., 1991. Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09'–54'N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridge. Earth Planet. Sci. Lett., 104: 513–534 doi: 10.1016/0012-821X(91)90226-8 |
| Haymon, R. M., Fornari, D. J., Lilley, M. D., et al., 1993. Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45–52'N: Direct Submersible Observation of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth and Planetary Science Letters, 119: 85–101 doi: 10.1016/0012-821X(93)90008-W |
| Heather, L. H., Anna, M., Robert, M. J., et al., 2004. Testing Biological Control of Colonization by Vestimentiferan Tubeworms at Deep-Sea Hydrothermal Vents (East Pacific Rise, 9°50'N). Deep-Sea Research I, 51: 225–234 doi: 10.1016/j.dsr.2003.10.008 |
| Herzig, P. M., Hannington, M. D., Fouquet, Y., et al., 1993. Gold-Rich Polymetallic Sulfides from the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific. Econ. Geol., 88: 2182–2200 doi: 10.2113/gsecongeo.88.8.2182 |
| Hou, Z. Q., Qu, X. M., Xu, M. J., et al., 2001. The Gacun VHMS Deposit in Sichuan Province: From Field Observation to Genetic Model. Mineral Deposits, 20(1): 44–56 (in Chinese with English Abstract) |
| Hu, W. X., Zhang, W. L., Hu, S. X., et al., 2000. Study of Chalcopyrite Disease Texture Resulted from Replacement of Chalcopyrite by Sphalerite. Acta Mineralogica Sinica, 20(4): 331–336 (in Chinese with English Abstract) |
| Janecky, D. R., Seyfried, W. E., 1984. Formation of Massive Sulfide Deposits on Oceanic Ridge Crests: Incremental Reaction Models for Mixing between Hydrothermal Solutions and Sea Water. Geochim. Cosmochim. Acta, 48: 2723–2738 doi: 10.1016/0016-7037(84)90319-3 |
| Kojima, S., Sugaki, A., 1985. Phase Relationship in the Cu-Fe-Zn-S System between 500 ℃ and 300 ℃ under Hydrothermal Condition. Econ. Geol., 80: 158–171 doi: 10.2113/gsecongeo.80.1.158 |
| Kurras, G. J., Fornari, D. J., Edwards, M. H., et al., 2000. Volcanic Morphology of the East Pacific Rise Crest 9°49'–52'N: Implications for Volcanic Emplacement Processes at Fast-Spreading Mid-Ocean Ridges. Marine Geophy. Res., 21 (1): 23–41 |
| Langmuir, C., Humphris, S., Fornari, D., et al., 1997. Hydrothermal Vents near a Mantle Hotspot: The Lucky Strike Vent Field at 37°N on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 148: 69–91 doi: 10.1016/S0012-821X(97)00027-7 |
| Li, J. L., Wang, S., 1990. Investigation of a New Exsolved Cu-Fe-S Phase in Abnormal Sphalerite. Acta Geologica Sinica, 3: 201–215 (in Chinese with English Abstract) |
| Lupton, J. E., Lilley, M. D., Olson, E., et al., 1991. Gas Chemistry of Vent Fluids from 9–10°N on the East Pacific Rise. EOS, Trans. Am. Geophys., 72: 481 |
| Lusk, J., Calder, B. O. E., 2004. The Composition of Sphalerite and Associated Sulfides in Reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S Systems at 1 bar and Temperatures between 250 and 535 ℃. Chemical Geology, 203: 319–345 doi: 10.1016/j.chemgeo.2003.10.011 |
| Münch, U., Blum, N., Halbach, P., 1999. Mineralogical and Geochemical Features of Sulfide Chimneys from the MESO Zone, Central Indian Ridge. Chemical Geology, 155: 29–44 doi: 10.1016/S0009-2541(98)00139-9 |
| Oosting, S. E., von Damm, K. L., 1996. Bromide/Chloride Fractionation in Seafloor Hydrothermal Fluids from 9–10°N East Pacific Rise. Earth Planet. Sci. Lett., 144: 133–145 doi: 10.1016/0012-821X(96)00149-5 |
| Shank, T. M., Fornari, D. J., Von Damm, K. L., et al., 1998. Temporal and Spatial Patterns of Biological Community Development at Nascent Deep-Sea Hydrothermal Vents (9°50'N, East Pacific Rise). Deep-Sea Research II, 45: 465–515 doi: 10.1016/S0967-0645(97)00089-1 |
| Shanks, W. C., Bohlke, J. K., Seal, R. R., et al., 1991. Stable Isotope Studies of Vent Fluids, 9–10°N East Pacific Rise: Water-Rock Interaction and Phase Separation. EOS, Trans. Am. Geophys., 72: 481 |
| Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. J. Geophys. Res., 100(12): 527–555 |
| Wiggins, L. B., Craig, J. R., 1980. Reconnaissance of the Cu-Fe-Zn-S System: Sphalerite Phase Relationship. Econ. Geol., 75: 742–751 doi: 10.2113/gsecongeo.75.5.742 |
| Wu, S. Y., Gao, A. G., Wang, K. Y., et al., 2000. World Seafloor Hydrothermal Sulfide Resources. China Ocean Press, Beijing. 151 (in Chinese) |
| Yund, R. A., Kullerud, G., 1966. Thermal Stability of Assemblages in the Cu-Fe-S System. Jour. Petro., 7: 454–488 doi: 10.1093/petrology/7.3.454 |