Citation: | Hanzhong Ke, Xike Tian, Jianhua Zheng, Zhenbang Pi. Shape-Controlled Synthesis of ZnO Nano- and Microstructures by Tuning the Alkalinity via a Hydrothermal Process in the Presence of Poly (Acrylic Acid) (PAA). Journal of Earth Science, 2007, 18(2): 167-171. |
The sizes and morphologies of hexagonal phase ZnO crystals were successfully controlled by a hydrothermal process in the presence of poly (acrylic acid) (PAA). The dosage of NaOH in this reaction system proved to be crucial in the growth process. With the increase of dosage from 0.7 g to 3.0 g, the morphologies of the ZnO crystals changed from nanoplates to microrods. Their optical properties were also investigated.
Burda, C., Chen, X., Narayanan, R., et al., 2005. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 105: 1025–1102 doi: 10.1021/cr030063a |
Cheng, G., Wang, J., Liu, X., et al., 2006. Self-Assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly (Acrylic Acid)-Assisted Solvothermal Process. J. Phys. Chem. B, 110: 16208–16211 doi: 10.1021/jp061935q |
Goldberger, J., Sirbuly, D. J., Law, M., et al., 2005. ZnO Nanowire Transistors. J. Phys. Chem. B, 109: 9–14 |
Greene, L. E., Law, M., Goldberger, J., et al., 2003. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angew. Chem. Int. Ed. Eng., 42: 3031–3034 doi: 10.1002/anie.200351461 |
Huang, M. H., Mao, S., Feick, H., et al., 2001. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 292: 1897–1899 doi: 10.1126/science.1060367 |
Kar, S., Pal, B. N., Chaudhuri, S., et al., 2006. One-Dimensional ZnO Nanostructure Arrays: Synthesis and Characterization. J. Phys. Chem. B, 110: 4605–4611 doi: 10.1021/jp056673r |
Kong, Y. C., Yu, D. P., Zhang, B., et al., 2001, Ultraviolet-Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach. Appl. Phys. Lett., 78: 407–409 doi: 10.1063/1.1342050 |
Kuo, C. L., Kuo, T. J., Huang, M. H., 2006. Solution-Grown Zinc Oxide Nanowires. Inorganic Chemistry, 45: 7535–7543 doi: 10.1021/ic0601900 |
Kuo, C. L., Kuo, T. J., Huang, M. H., 2005. Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures. J. Phys. Chem. B, 109: 20115–20121 doi: 10.1021/jp0528919 |
Li, F., Ding, Y., Gao, P., et al., 2004. Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism. Angew. Chem. Int. Ed. Eng., 43: 5238–5242 doi: 10.1002/anie.200460783 |
Lin, Y. R., Yang, S. S., Tsai, S. Y., et al., 2006. Visible Photoluminescence of Ultrathin ZnO Nanowire at Room Temperature. Cryst. Growth Des., 6: 1951–1955 doi: 10.1021/cg050416u |
Pan, Z. W., Dai, S., Rouleau, C. M., et al., 2005. Germanium-Catalyzed Growth of Zinc Oxide Nanowires: A Semiconductor Catalyst for Nanowire Synthesis. Angew. Chem. Int. Ed., Eng. 44: 274–278 doi: 10.1002/anie.200460043 |
Rodriguez, J. A., Jirsak, T., Dvorak, J., et al., 2000. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3. J. Phys. Chem. B, 104: 319–328 doi: 10.1021/jp993224g |
Sakahara, S., Ishida, M., Anderson, M. A., 1998. Visible Luminescence and Surface Properties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate. J. Phys. Chem. B, 102: 10169–10175 doi: 10.1021/jp982594m |
Sberveglieri, G., Groppelli, S., Nelli, P., et al., 1995. A Novel Method for the Preparation of NH3 Sensors Based on ZnO-in Thin Films. Sens. Actuators, B, 25: 588–590 doi: 10.1016/0925-4005(95)85128-3 |
Tam, K. H., Cheung, C. K., Leung, Y. H., et al., 2006. Defects in ZnO Nanorods Prepared by a Hydrothermal Method. J. Phys. Chem. B, 110: 20865–20871 doi: 10.1021/jp063239w |
Wan, Q., Li, Q. H., Chen, Y. J., et al., 2004. Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors. Appl. Phys. Lett., 84: 3654–3656 doi: 10.1063/1.1738932 |
Xia, Y. N., Yang, P. D., Sun, Y. G., et al., 2003. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater., 15: 353–389 doi: 10.1002/adma.200390087 |
Yamabi, S., Imai, H., 2002. Growth Conditions for Wurtzite Zinc Oxide Films in Aqueous Solutions. J. Mater. Chem., 12: 3773–3778 doi: 10.1039/b205384e |
Yan, H., Johnson, J., Law, M., et al., 2003. ZnO Nanoribbon Microcavity Lasers. Adv. Mater., 15: 1907–1911 doi: 10.1002/adma.200305490 |
Yu, H., Zhang, Z., Han, M., et al., 2005. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays. J. Am. Chem. Soc., 127: 2378–2379 doi: 10.1021/ja043121y |
Zhang, D. F., Sun, L. D., Yin, J. L., et al., 2005. Attachment-Driven Morphology Evolvement of Rectangular ZnO Nanowires. J. Phys. Chem. B, 109: 8786–8790 doi: 10.1021/jp050631l |
Zhang, T., Dong, W., Keeter-Brewer, M., et al., 2006. Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites. J. Am. Chem. Soc., 128: 10960–10968 doi: 10.1021/ja0631596 |
Zhang, Z., Yuan, H., Zhou, J., et al., 2006. Growth Mechanism, Photoluminescence, and Field-Emission Properties of ZnO Nanoneedle Arrays. J. Phys. Chem. B, 110: 8566–8569 doi: 10.1021/jp0568632 |