Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 18 Issue 2
Apr 2007
Turn off MathJax
Article Contents
Chao Yang, Zhuoqin Liu, Xike Tian, Zhenbang Pi, Shengping Wang. The Composite Effect of Nanometer MnO2 Mixed with the Electrolytic MnO2. Journal of Earth Science, 2007, 18(2): 172-176.
Citation: Chao Yang, Zhuoqin Liu, Xike Tian, Zhenbang Pi, Shengping Wang. The Composite Effect of Nanometer MnO2 Mixed with the Electrolytic MnO2. Journal of Earth Science, 2007, 18(2): 172-176.

The Composite Effect of Nanometer MnO2 Mixed with the Electrolytic MnO2

Funds:

Chenguang Program for Young Scientists of Wuhan, Hubei Province 20065004116-22

More Information
  • Corresponding author: Tian Xike, xktian@cug.edu.cn
  • Received Date: 22 Jan 2007
  • Accepted Date: 20 Mar 2007
  • The nanometer MnO2 has outstanding electrochemical performance theoretically, but it is not suitable for actual utilization, which may result in capacity decrease and resource waste. In this study we have utilized the characterizations of the nanometer material, synthesized a type of nanometer α-MnO2 through KMnO4 and KNO3 with hydrothermal method, and mixed the products into micron electrolytic manganese dioxide (EMD) to enhance the electrochemical performance of the electrode. The cyclic voltammogram and galvanostatical discharge measurements of the samples were investigated. It is found that the 50% nanometer MnO2 mixed electrode has the best electrochemical performance. The electrochemical performance improvement mechanism of the sample nanometer MnO2 mixed into micron EMD was discussed. With the existence of electrolyte, the nanometer MnO2 particles filled into the interspaces of the micron EMD particles, the mass and charge transfer conditions of the electrode reaction were improved, and the electrode polarization was diminished.

     

  • loading
  • Bakardjieva, S., Bezdicka, P., Grygar, T., 2000. Reductive Dissolution of Microparticulate Manganese Oxides. J. Solid State Electrochem., 4: 306–313 doi: 10.1007/s100089900104
    Chen, J., Tao, Z. L., Gou, X. L., 2006. Chemical Power Sources: Principle, Technology & Application. Chemical Industry Press, Beijing (in Chinese)
    Cheng, F. Y., Chen, J., Gou, X. L., et al., 2005. High-Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder. Advanced Materials, 17: 2753–2756 doi: 10.1002/adma.200500663
    De Guzman, R. N., Awaluddin, A., Shen, Y. F., et al., 1995. Electrical Resistivity Measurements on Manganese Oxides with Layer and Tunnel Structures: Birnessites, Todorokites, and Cryptomelanes. Chemistry of Materials, 7: 1286–1292 doi: 10.1021/cm00055a003
    Ivanova, N. D., Boldyrev, E. I., Ivanov, S. V., et al., 2002a. Comarative Characteristics of Chemical Power Cells Based on MnO2-Zn Systems with Various Manganese Dioxide Samples. Russian Journal of Applied Chemistry, 75(6): 953–955
    Ivanova, N. D., Boldyrev, E. I., Sokol'skii, G. V., et al., 2002b. Composition, Properties, and Electrochemical Behavior of Nonstoichiometric Manganese Dioxide Obtained in Fluoride-Containing Electrolytes. Russian Journal of Electrochemistry, 38(9): 1091–1097
    Ma, R., Bando, Y., Zhang, L. Q., et al., 2004. Layered MnO2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements. Advanced Materials, 16(11): 918–922 doi: 10.1002/adma.200306592
    Mourad, W. E., Rophad, M. W., Khalil, L. B., 1980. Preparation and Characterization of Doped Manganese Dioxides. Journal of Applied Electrochemistry, 10(13): 309–313
    Qu, D. Y., Diehl, D., Conway, B. E., et al., 2005. Development of High-Capacity Primary Alkaline Manganese Dioxide/Zinc Cells Consisting of Bi-doping of MnO2. Journal of Applied Electrochemistry, Doi: 10.1007/s10800-005-9005-y
    Subramanian, V., Zhu, H. W., Vajtai, R., et al., 2005. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. Journal of Physical Chemistry B, 109: 20207–20214 doi: 10.1021/jp0543330
    Urfer, A., Lawrance, G. A., Swinkels, D. A. J., 2001. The Role of Particle Size in Cathode Optimization in Alkaline Primary Batteries. Journal of Applied Electrochemistry, 31: 341–347 doi: 10.1023/A:1017512721635
    Urfer, A., Lawrance, G. A., Swinkels, D. A. J., 1997. Measuring Variation in EMD Reduction with Location in Primary Alkaline Batteries. Journal of Applied Electrochemistry, 27: 667–672 doi: 10.1023/A:1018479502757
    Wang, X. Y., Wang, X. Y., Huang, W. G., et al., 2005. Sol-gel Template Synthesis of Highly Ordered MnO2 Nanowire Arrays. Journal of Power Sources, 140: 211–215 doi: 10.1016/j.jpowsour.2004.07.033
    West, W. C., Myung, N. V., Whitacre, J. F., et al., 2004. Electrodeposited Amorphous Manganese Oxide Nanowire Arrays for High Energy and Power Density Electrodes. Journal of Power Sources, 126: 203–206 doi: 10.1016/j.jpowsour.2003.08.020
    Xi, X., 2004. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅰ). Battery Bimonthly, 34(6): 411–414 (in Chinese) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DACI200505012.htm
    Xi, X., 2005a. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅱ). Battery Bimonthly, 35(1): 27–30 (in Chinese)
    Xi, X., 2005b. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅲ). Battery Bimonthly, 35(2): 105–108 (in Chinese)
    Xi, X., 2005c. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅳ). Battery Bimonthly, 35(3): 199–203 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(491) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return