Citation: | Chao Yang, Zhuoqin Liu, Xike Tian, Zhenbang Pi, Shengping Wang. The Composite Effect of Nanometer MnO2 Mixed with the Electrolytic MnO2. Journal of Earth Science, 2007, 18(2): 172-176. |
The nanometer MnO2 has outstanding electrochemical performance theoretically, but it is not suitable for actual utilization, which may result in capacity decrease and resource waste. In this study we have utilized the characterizations of the nanometer material, synthesized a type of nanometer α-MnO2 through KMnO4 and KNO3 with hydrothermal method, and mixed the products into micron electrolytic manganese dioxide (EMD) to enhance the electrochemical performance of the electrode. The cyclic voltammogram and galvanostatical discharge measurements of the samples were investigated. It is found that the 50% nanometer MnO2 mixed electrode has the best electrochemical performance. The electrochemical performance improvement mechanism of the sample nanometer MnO2 mixed into micron EMD was discussed. With the existence of electrolyte, the nanometer MnO2 particles filled into the interspaces of the micron EMD particles, the mass and charge transfer conditions of the electrode reaction were improved, and the electrode polarization was diminished.
Bakardjieva, S., Bezdicka, P., Grygar, T., 2000. Reductive Dissolution of Microparticulate Manganese Oxides. J. Solid State Electrochem., 4: 306–313 doi: 10.1007/s100089900104 |
Chen, J., Tao, Z. L., Gou, X. L., 2006. Chemical Power Sources: Principle, Technology & Application. Chemical Industry Press, Beijing (in Chinese) |
Cheng, F. Y., Chen, J., Gou, X. L., et al., 2005. High-Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder. Advanced Materials, 17: 2753–2756 doi: 10.1002/adma.200500663 |
De Guzman, R. N., Awaluddin, A., Shen, Y. F., et al., 1995. Electrical Resistivity Measurements on Manganese Oxides with Layer and Tunnel Structures: Birnessites, Todorokites, and Cryptomelanes. Chemistry of Materials, 7: 1286–1292 doi: 10.1021/cm00055a003 |
Ivanova, N. D., Boldyrev, E. I., Ivanov, S. V., et al., 2002a. Comarative Characteristics of Chemical Power Cells Based on MnO2-Zn Systems with Various Manganese Dioxide Samples. Russian Journal of Applied Chemistry, 75(6): 953–955 |
Ivanova, N. D., Boldyrev, E. I., Sokol'skii, G. V., et al., 2002b. Composition, Properties, and Electrochemical Behavior of Nonstoichiometric Manganese Dioxide Obtained in Fluoride-Containing Electrolytes. Russian Journal of Electrochemistry, 38(9): 1091–1097 |
Ma, R., Bando, Y., Zhang, L. Q., et al., 2004. Layered MnO2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements. Advanced Materials, 16(11): 918–922 doi: 10.1002/adma.200306592 |
Mourad, W. E., Rophad, M. W., Khalil, L. B., 1980. Preparation and Characterization of Doped Manganese Dioxides. Journal of Applied Electrochemistry, 10(13): 309–313 |
Qu, D. Y., Diehl, D., Conway, B. E., et al., 2005. Development of High-Capacity Primary Alkaline Manganese Dioxide/Zinc Cells Consisting of Bi-doping of MnO2. Journal of Applied Electrochemistry, Doi: 10.1007/s10800-005-9005-y |
Subramanian, V., Zhu, H. W., Vajtai, R., et al., 2005. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. Journal of Physical Chemistry B, 109: 20207–20214 doi: 10.1021/jp0543330 |
Urfer, A., Lawrance, G. A., Swinkels, D. A. J., 2001. The Role of Particle Size in Cathode Optimization in Alkaline Primary Batteries. Journal of Applied Electrochemistry, 31: 341–347 doi: 10.1023/A:1017512721635 |
Urfer, A., Lawrance, G. A., Swinkels, D. A. J., 1997. Measuring Variation in EMD Reduction with Location in Primary Alkaline Batteries. Journal of Applied Electrochemistry, 27: 667–672 doi: 10.1023/A:1018479502757 |
Wang, X. Y., Wang, X. Y., Huang, W. G., et al., 2005. Sol-gel Template Synthesis of Highly Ordered MnO2 Nanowire Arrays. Journal of Power Sources, 140: 211–215 doi: 10.1016/j.jpowsour.2004.07.033 |
West, W. C., Myung, N. V., Whitacre, J. F., et al., 2004. Electrodeposited Amorphous Manganese Oxide Nanowire Arrays for High Energy and Power Density Electrodes. Journal of Power Sources, 126: 203–206 doi: 10.1016/j.jpowsour.2003.08.020 |
Xi, X., 2004. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅰ). Battery Bimonthly, 34(6): 411–414 (in Chinese) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DACI200505012.htm |
Xi, X., 2005a. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅱ). Battery Bimonthly, 35(1): 27–30 (in Chinese) |
Xi, X., 2005b. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅲ). Battery Bimonthly, 35(2): 105–108 (in Chinese) |
Xi, X., 2005c. Crystal Structure, Preparation and Discharge Performance for Manganese Dioxides and Related Manganese Oxides (Ⅳ). Battery Bimonthly, 35(3): 199–203 (in Chinese) |