Citation: | Bill X Hu, Xiaowei Jiang, Li Wan. Integration of Tracer Test Data to Refine Geostatistical Hydraulic Conductivity Fields Using Sequential Self-Calibration Method. Journal of Earth Science, 2007, 18(3): 242-256. |
On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method—the sequential self-calibration (SSC) method—is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.
Anderson, M. P., Woessner, W. W., 1992. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press, San Diego |
Anderson, M. P., 1996. Characterization of Geological Heterogeneity. In: Dagan, G., Neuman, S. P., eds., Subsurface Flow and Transport: A Stochastic Approach. Cambridge Univ. Press, Cambridge. 23–43 |
Capilla, J., Gómez-Henández, J., Sahuquillo, A., 1997. Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data, 2. Demonstration on a Synthetic Aquifer. J. Hydrol. , 203: 175–188 doi: 10.1016/S0022-1694(97)00097-8 |
Capilla, J., Gómez-Henández, J., Sahuquillo, A., 1998. Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data, 3. Application to the Culebra Formation at the Waste Isolation Pilot Plant (WIPP), New Mexico, USA. J. Hydrol. , 207: 254–269 doi: 10.1016/S0022-1694(98)00138-3 |
Carrera, J., Neuman, S. P., 1986. Estimation of Aquifer Parameters under Transient and Steady State Conditions, 1. Maximum Likelihood Method Incorporating Prior Information. Water Resour. Res. , 22(2): 199–210 doi: 10.1029/WR022i002p00199 |
Carrera, J., Alcolea, A., Medina, A., et al., 2005. Inverse Problem in Hydrogeology. Hydrogeol. J. , 13(1): 206–222 doi: 10.1007/s10040-004-0404-7 |
Datta-Gupta, A., King, M. J., 1995. A Semianalytical Approach to Tracer Flow Modeling in Heterogeneous Permeable Media. Adv. Water Resour. , 18: 9–24 doi: 10.1016/0309-1708(94)00021-V |
Datta-Gupta, A., Lake, L. W., Pope, G. A., 1995. Characterizing Heterogeneous Permeable Media with Spatial Statistics and Tracer Data Using Sequential Simulation Annealing. Math. Geol. , 27: 763–787 doi: 10.1007/BF02273537 |
Datta-Gupta, A., Vasco, D. W., Long, J. C. S., et al., 1994. Stochastic Modeling of Spatial Heterogeneities Conditioned to Hydraulic and Tracer Tests. Proceedings of the 5th Annual International Conference on High Level Radioactive Waste Management. Am. Soc. of Civ. Eng., Reston, Va., 4: 2624–2632 |
Datta-Gupta, A., Vasco, D. W., Long, J. C. S., 1997. On the Sensitivity and Spatial Resolution of Transient Pressure and Tracer Data for Heterogeneity Characterization. SPE Form. Eval. , 12: 137–144 doi: 10.2118/30589-PA |
Deutsch, C. V., Journel, A. G., 1998. GSLIB Geostatistical Software Library and User's Guide. 2nd Edition. Oxford University Press, Oxford |
Deutsch, C. V., 2002. Geostatistical Reservoir Modeling. Oxford University Press, Oxford |
Dubrule, O., Damsleth, E., 2001. Achievements and Challenges in Petroleum Geostatistics. Petroleum Geoscience, 7(Suppl. ): 1–7 |
Gelhar, L. W., 1993. Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs, NJ |
Gómez-Henández, J. J., Sahuquillo, A., Capilla, J. E., 1997. Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data, 1. The Theory. J. Hydrol. , 203: 162–174 doi: 10.1016/S0022-1694(97)00098-X |
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford |
Harvey, C. F., Gorelick, S. M., 1995. Mapping Hydraulic Conductivity: Sequential Conditioning with Measurements of Solute Arrival Time, Hydraulic Head, and Local Conductivity. Water Resour. Res. , 31: 1615–1626 doi: 10.1029/95WR00547 |
Hewett, T. A., Deutsch, C. V., 1996. Challenges in Reservoir Forecasting. Math. Geology, 28(7): 829–842 doi: 10.1007/BF02066003 |
Hoeksema, R. J., Kitanidis, P. K., 1984. An Application of the Geostatistical Approach to the Inverse Problem in the Two-Dimensional Groundwater Modeling. Water Resour. Res. , 20: 1003–1020 doi: 10.1029/WR020i007p01003 |
Huang, H., Hu, B. X., Wen, X. H., et al., 2004. Self-Sequential Calibration Method for Hydraulic Conductivity Distribution Conditioned on Tracer Test Results. Water Resour. Res. , 40: W01506, Doi: 10.1029/2003WR002253 |
Kitanidis, P. K., Vomvoris, E. G., 1983. A Geostatistical Approach to the Inverse Problem in Groundwater Modeling (Steady State) and One-Dimensional Simulations. Water Resour. Res. , 19: 677–690 doi: 10.1029/WR019i003p00677 |
Koltermann, C. E., Gorelick, S. M., 1996. Heterogeneity in Sedimentary Deposits: A Review of Structure-Imitating, Process-Imitating, and Descriptive Approaches. Water Resour. Res. , 32: 2617–2658 doi: 10.1029/96WR00025 |
Konikow, L. F., Reilly, T. E., 1999. Groundwater Modeling. In: Delleur, J. W., ed., The Handbook of Groundwater Engineering. CRC Press, Boca Raton |
Lavenue, A. M., Ramarao, B. S., Marsily, G. D., et al., 1995. Pilot-Point Methodology for Automated Calibration of an Ensemble of Conditionally Simulated Transmissivity Fields 2. Application. Water Resour. Res. , 31: 495–516 doi: 10.1029/94WR02259 |
Li, B., Yeh, T. C. J., 1999. Cokringing Estimation of the Conductivity Field under Variably Saturated Flow Conditions. Water Resour. Res. , 35: 3663–3674 doi: 10.1029/1999WR900268 |
Marsily, G. D., Delay, F., Teles, V., et al., 1998. Some Current Methods to Represent the Heterogeneity of Natural Media in Hydrogeology. Hydrogeol. J. , 6: 115–130 doi: 10.1007/s100400050138 |
Marsily, G. D., Delay, F., Goncalves, J., et al., 2005. Dealing with Spatial Heterogeneity. Hydrogeol. J. , 13: 161–183 doi: 10.1007/s10040-004-0432-3 |
Mclaughlin, D., Townley, L. R., 1996. A Reassessment of the Groundwater Inverse Problem. Water Resour. Res. , 32: 1131–1162 doi: 10.1029/96WR00160 |
Neuman, S. P., 1996. Stochastic Approach to Subsurface Flow and Transport: A View to the Future. In: Dagan, G., Neuman, S. P., eds., Subsurface Flow and Transport: A Stochastic Approach. Cambridge Univ. Press, Cambridge |
Olea, R. A., 1991. Geostatistical Glossary and Multilingual Dictionary. Oxford University Press, Oxford |
Ramarao, B. S., Lavenue, A. M., Marsily, G. D., et al., 1995. Pilot Point Methodology for Automated Calibration of an Ensemble of Conditionally Simulated Transmissivity Fields, 1. Theory and Computational Experiments. Water Resour. Res. , 31: 475–493 doi: 10.1029/94WR02258 |
Sahuquillo, A., Capilla, J. E., Gómez-Henández, J. J., et al., 1992. Conditional Simulation of Transmissivity Fields Honoring Piezometric Data. In: Blair, W. R., Cabrera, E., eds., Hydraulic Engineering Software IV. Comput. Mech. . Boston, Mass |
Srivastava, R. M., 1994. An Overview of Stochastic Methods for Reservoir Characterization. In: Yarus, J. M., Chanmbers, R. L., eds., Stochastic Modeling and Geostatistics: Principles, Methods and Case Studies. AAPG |
Sun, N. Z., 1994. Inverse Problem in Groundwater Modeling. Kluwer Acad., Norwell, Mass |
Vasco, D. W., Datta-Gupta, A., 1997. Integrating Multiphase Production History in Stochastic Reservoir Characterization. SPE Form. Eval. , 12(3): 149–156 doi: 10.2118/36567-PA |
Wen, X. H., Deutsch, C. V., Cullick, A. S., 1997a. A Review of Current Approaches to Integrate Flow Production Data in Geological Modeling. In Report 10, Stanford Center for Reservior Forecasting. Stanford, CA |
Wen, X. H., Deutsch, C. V., Cullick, A. S., 1997b. High Resolution Reservoir Models Integrating Multiple-Well Production Data. SPE J. , SPE 38728 |
Wen, X. H., Capilla, J. E., Deutsch, C. V., et al., 1999. A Program to Create Permeability Fields that Honor Single-Phase Flow Rate and Pressure Data. Comput. Geosci. , 25: 217–230 doi: 10.1016/S0098-3004(98)00126-5 |
Wen, X. H., Deutsch, C. V., Cullick, A. S., 2002. Construction of Geostatistical Aquifer Models Integrating Dynamic Flow and Tracer Data Using Inverse Technique. J. Hydrol. , 255: 151–168 doi: 10.1016/S0022-1694(01)00512-1 |
Yeh, T. C. J., Jin, M., Hanna, S., 1996. An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields. Water Resour. Res. , 32: 85–92 doi: 10.1029/95WR02869 |
Yeh, W. W. G., 1986. Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resour. Res. , 22: 95–108 doi: 10.1029/WR022i002p00095 |
Zhang, J., Yeh, T. C. J., 1997. An Iterative Geostatistical Inverse Method for Steady Flow in the Vadose Zone. Water Resour. Res. , 33: 63–71 doi: 10.1029/96WR02589 |
Zimmerman, D. A., Marsily, G. D., Cotway, C. A., et al., 1998. A Comparison of Seven Geostatistically Based Inverse Approaches to Estimate Transmissivities for Modeling Advective Transport by Groundwater Flow. Water Resour. Res. , 34(6): 1373–1413 doi: 10.1029/98WR00003 |