Citation: | Wei Lou, Dexian Zhang. Applications of Deep Learning in Mineral Discrimination: A Case Study of Quartz, Biotite and K-Feldspar from Granite. Journal of Earth Science, 2025, 36(1): 29-45. doi: 10.1007/s12583-022-1672-7 |
Mineral identification and discrimination play a significant role in geological study. Intelligent mineral discrimination based on deep learning has the advantages of automation, low cost, less time consuming and low error rate. In this article, characteristics of quartz, biotite and K-feldspar from granite thin sections under cross-polarized light were studied for mineral images intelligent classification by Inception-v3 deep learning convolutional neural network (CNN), and transfer learning method. Dynamic images from multi-angles were employed to enhance the accuracy and reproducibility in the process of mineral discrimination. Test results show that the average discrimination accuracies of quartz, biotite and K-feldspar are 100.00%, 96.88% and 90.63%. Results of this study prove the feasibility and reliability of the application of convolution neural network in mineral images classification. This study could have a significant impact in explorations of complicated mineral intelligent discrimination using deep learning methods and it will provide a new perspective for the development of more professional and practical mineral intelligent discrimination tools.
Aprile, A., Castellano, G., Eramo, G., 2014. Combining Image Analysis and Modular Neural Networks for Classification of Mineral Inclusions and Pores in Archaeological Potsherds. Journal of Archaeological Science, 50: 262–272. https://doi.org/10.1016/j.jas.2014.07.017 |
Auli, M., Galley, M., Quirk, C., et al., 2013. Joint Language and Translation Modeling with Recurrent Neural Networks. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), Oct. 18–21, 2013, Seattle. 1044–1054 |
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 |
Bai, L., Yao, Y., Li, S. T., et al., 2018. Mineral Compositionanalysis of Rock Image Based on Deep Learning Feature Extraction. China Mining Magazine, 27(7): 178–182 (in Chinese with English Abstract) |
Baykan, N. A., Yılmaz, N., 2010. Mineral Identification Using Color Spaces and Artificial Neural Networks. Computers & Geosciences, 36(1): 91–97. https://doi.org/10.1016/j.cageo.2009.04.009 |
Böhning, D., 1992. Multinomial Logistic Regression Algorithm. Annals of the Institute of Statistical Mathematics, 44(1): 197–200. https://doi.org/10.1007/bf00048682 |
Cheng, G. J., Guo, W. H., Fan, P. Z., 2017. Study on Rock Image Classification Based on Convolution Neural Network. Journal of Xi'an Shiyou University (Natural Science Edition), 32(4): 116–122. https://doi.org/10.3969/j.issn.1673-064X.2017.04.020 (in Chinese with English Abstract) |
Cover, T., Hart, P., 1967. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1): 21–27. https://doi.org/10.1109/TIT.1967.1053964 |
Dai, W. Y., Yang, Q., Xue, G. R., et al., 2007. Boosting for transfer Learning. Proceedings of the 24th International Conference on Machine Learning, Jun. 20–24, 2007, Corvalis. 193–200. |
Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al., 2020. Generative Adversarial Networks. Communications of the ACM, 63(11): 139–144. https://doi.org/10.1145/3422622 |
Guo, Y. J., Zhou, Z., Lin, H. X., et al., 2020. The Mineral Intelligence Identification Method Based on Deep Learning Algorithms. Earth Science Frontiers, 27(5): 39–47. https://doi.org/10.13745/j.esf.sf.2020.5.45 (in Chinese with English Abstract) |
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 27–30, 2016, Las Vegas. 770–778. |
Hinton, G. E., Osindero, S., Teh, Y. W., 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7): 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 |
Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786): 504–507. https://doi.org/10.1126/science.1127647 |
Hinton, G. E., Srivastava, N., Krizhevsky, A., et al., 2012. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. arXiv: 1207.0580. http://arxiv.org/abs/1207.0580v1 |
Hrstka, T., Gottlieb, P., Skála, R., et al., 2018. Automated Mineralogy and Petrology-Applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences, 47–63. https://doi.org/10.3190/jgeosci.250 |
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 21–26, 2017, Honolulu. 2261–2269. |
Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Jul. 6–11, 2015, Lille. 448–456. |
Itano, K., Ueki, K., Iizuka, T., et al., 2020. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences, 10(2): 63. https://doi.org/10.3390/geosciences10020063 |
Iyas, M. R., Setiawan, N. I., Warmada, I. W., 2020. Mask R-CNN for Rock-Forming Minerals Identification on Petrography, Case Study at Monterado, West Kalimantan. E3S Web of Conferences, 200: 06007. https://doi.org/10.1051/e3sconf/202020006007 |
Jiang, F., Li, N., Zhou, L. L., 2020. Grain Segmentation of Sandstone Images Based on Convolutional Neural Networks and Weighted Fuzzy Clustering. IET Image Processing, 14(14): 3499–3507. https://doi.org/10.1049/iet-ipr.2019.1761 |
Kingma, D. P., Ba, J., Hammad, M. M., 2014. Adam: A Method for Stochastic Optimization. arXiv: 1412.6980. http://arxiv.org/abs/1412.6980v9 |
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84–90. https://doi.org/10.1145/3065386 |
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436–444. https://doi.org/10.1038/nature14539 |
LeCun, Y., Boser, B., Denker, J. S., et al., 1989. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4): 541–551. https://doi.org/10.1162/neco.1989.1.4.541 |
LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278–2324. https://doi.org/10.1109/5.726791 |
Li, M. C., Liu, C. Z., Zhang, Y., et al., 2020. A Deep Learning and Intelligent Recognition Method of Image Data for Rock Mineral and Its Implementation. Geotectonica et Metallogenia, 44(2): 203–211. https://doi.org/10.16539/j.ddgzyckx.2020.02.004 (in Chinese with English Abstract) |
Liao, B. B., 2018. Analysis of Current Status and Development Trend of Rock and Mineral Identification. Resource Information and Engineering, 33(2): 27–28 (in Chinese with English Abstract) |
Liu, X. P., Luan, X. D., Xie, Y. X., et al., 2018. Transfer Learning Research and Algorithm Review. Journal of Changsha University, 32(5): 28–31, 36. https://doi.org/10.3969/j.issn.1008-4681.2018.05.008 (in Chinese with English Abstract) |
Liu, Y. B., Cao, S. G., Liu, Y. C., 2008. Discussion on Analytical Method for LS-SVM Based Mesoscopic Rock Images. Chinese Journal of Rock Mechanics and Engineering, 27(5): 1059–1065. https://doi.org/10.3321/j.issn:1000-6915.2008.05.023 (in Chinese with English Abstract) |
Lou, W., Zhang, D. X., Bayless, R. C., 2020. Review of Mineral Recognition and Its Future. Applied Geochemistry, 122: 104727. https://doi.org/10.1016/j.apgeochem.2020.104727 |
Marmo, R., Amodio, S., Tagliaferri, R., et al., 2005. Textural Identification of Carbonate Rocks by Image Processing and Neural Network: Methodology Proposal and Examples. Computers & Geosciences, 31(5): 649–659. https://doi.org/10.1016/j.cageo.2004.11.016 |
Mohamed, A. A., Berg, W. A., Peng, H., et al., 2018. A Deep Learning Method for Classifying Mammographic Breast Density Categories. Medical Physics, 45(1): 314–321. https://doi.org/10.1002/mp.12683 |
Mollajan, A., Ghiasi-Freez, J., Memarian, H., 2016. Improving Pore Type Identification from Thin Section Images Using an Integrated Fuzzy Fusion of Multiple Classifiers. Journal of Natural Gas Science and Engineering, 31: 396–404. https://doi.org/10.1016/j.jngse.2016.03.030 |
Pan, S. J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345–1359. https://doi.org/10.1109/TKDE.2009.191 |
Patel, V. M., Gopalan, R., Li, R. N., et al., 2015. Visual Domain Adaptation: A Survey of Recent Advances. IEEE Signal Processing Magazine, 32(3): 53–69. https://doi.org/10.1109/MSP.2014.2347059 |
Peng, W. H., Bai, L., Shang, S. W., et al., 2019. Common Mineral Intelligent Recognition Based on Improved InceptionV3. Geological Bulletin of China, 38(12): 2059–2066 (in Chinese with English Abstract) |
Quinlan, J. R., 1986. Induction of Decision Trees. Machine Learning, 1(1): 81–106. https://doi.org/10.1007/BF00116251 |
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556. |
Singh, N., Singh, T. N., Tiwary, A., et al., 2010. Textural Identification of Basaltic Rock Mass Using Image Processing and Neural Network. Computational Geosciences, 14(2): 301–310. https://doi.org/10.1007/s10596-009-9154-x |
Smirnov, E. A., Timoshenko, D. M., Andrianov, S. N., 2014. Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia, 6: 89–94. https://doi.org/10.1016/j.aasri.2014.05.013 |
Suykens, J. A. K., Vandewalle, J., 1999. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 9(3): 293–300. https://doi.org/10.1023/A: 1018628609742 doi: 10.1023/A:1018628609742 |
Szegedy, C., Ioffe, S., Vanhoucke, V., et al., 2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, Feb. 4–9, 2017, San Francisco. 4278–4284. |
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7–12, 2015, Boston. 1–9. https://doi.org/10.1109/CVPR.2015.7298594 |
Szegedy, C., Vanhoucke, V., Ioffe, S., et al., 2016. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30, 2016, Las Vegas. 2818–2826. |
Thompson, S., Fueten, F., Bockus, D., 2001. Mineral Identification Using Artificial Neural Networks and the Rotating Polarizer Stage. Computers & Geosciences, 27(9): 1081–1089. https://doi.org/10.1016/S0098-3004(00)00153-9 |
Ueki, K., Hino, H., Kuwatani, T., 2018. Geochemical Discrimination and Characteristics of Magmatic Tectonic Settings: A Machine-Learning-Based Approach. Geochemistry, Geophysics, Geosystems, 19(4): 1327–1347. https://doi.org/10.1029/2017gc007401 |
Wang, H., 2017. A Review of Transfer Learning. Computer Knowledge and Technology, 13(32): 203–205 (in Chinese with English Abstract) |
Wang, K. Y., Mao, Q., Ma, Y. G., et al., 2015. Secondary Reaction Textures in the Bayan Obo Carbonatite. Acta Petrologica Sinica, 31(9): 2674–2678 (in Chinese with English Abstract) |
Xie, X. K., 2016. Research on blurred Image Recognition Based on Transfer Learning: [Dissertation]. Huazhong University of Science and Technology, Wuhan. 82 (in Chinese with English Abstract) |
Xu, S. T., Zhou, Y. Z., 2018. Artificial Intelligence Identification of Ore Minerals under Microscope Based on Deep Learning Algorithm. Acta Petrologica Sinica, 34(11): 3244–3252 (in Chinese with English Abstract) |
Ye, R. Q., Niu, R. Q., Zhang, L. P., 2011. Mineral Features Extraction and Analysis Based on Multiresolution Segmentation of Petrographic Images. Journal of Jilin University (Earth Science Edition), 41(4): 1253–1261. https://doi.org/10.13278/j.cnki.jjuese.2011.04.034 (in Chinese with English Abstract) |
Zangeneh, E., Rahmati, M., Mohsenzadeh, Y., 2020. Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture. Expert Systems with Applications, 139: 112854. https://doi.org/10.1016/j.eswa.2019.112854 |
Zhai, Y. Y., Zeng, Q. D., Roland, H., et al., 2020. Reaction Mechanism during Hydrothermal Alteration of K-Feldspar under Alkaline Conditions and Nanostructures of the Producted Tobermorite. Acta Petrologica Sinica, 36(9): 2834–2844. https://doi.org/10.18654/1000-0569/2020.09.14 (in Chinese with English Abstract) |
Zhang, T., Zhao, J., Han, D., et al., 2021. Fluid Recognition Based on Multilayer Perceptron. Chemical Engineering Design Communications, 47(4): 178–179. https://doi.org/10.1016/j.fluid.2014.04.032 (in Chinese with English Abstract) |
Zhang, Y., Li, M. C., Han, S., 2018. Automatic Identification and Classification in Lithology Based on Deep Learning in Rock Images. Acta Petrologica Sinica, 34(2): 333–342 (in Chinese with English Abstract) |
Zhao, Y. Y., Shen, Y., Wang, F., 2020. Intelligent Recognition of Ore Minerals Based on CART and PU Algorithm. Journal of Shenyang Normal University (Natural Science Edition), 38(2): 176–182 (in Chinese with English Abstract) |
Zheng, W. M., Ye, C. J., Zhang, M. Y., et al., 2019. Data-Driven Spatial Load Forecasting Method Based on Softmax Probabilistic Classifier. Automation of Electric Power Systems, 43(9): 117–124. https://doi.org/10.7500/AEPS20181220008 (in Chinese with English Abstract) |