Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

2015 Vol. 26, No. 1

Display Method:
Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy
Klaus Regenauer-Lieb, David A. Yuen, Shihua Qi, Yanxin Wang, Chisheng Liang
2015, 17(1): 1-1. doi: 10.1007/s12583-015-0601-4
Abstract:
Deep Geothermal: The ‘Moon Landing’ Mission in the Unconventional Energy and Minerals Space
Klaus Regenauer-Lieb, , rew Bunger, Hui Tong Chua, Arcady Dyskin, Florian Fusseis, Oliver Gaede, Rob Jeffrey, Ali Karrech, Thomas Kohl, Jie Liu, et al.
2015, 17(1): 2-10. doi: 10.1007/s12583-015-0515-1
Abstract:
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.
Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems—A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy
Peter Mora, Yucang Wang, Fernando Alonso-Marroquin
2015, 17(1): 11-19. doi: 10.1007/s12583-015-0516-0
Abstract:
Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet’s future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle—the coupling of the lattice solid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge- or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.
Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction
Yucang Wang, Shimin Wang, Sheng Xue, Deepak Adhikary
2015, 17(1): 20-27. doi: 10.1007/s12583-015-0507-1
Abstract:
Understanding the characteristics of hydraulic fracture, porous flow and heat transfer in fractured rock is critical for geothermal power generation applications, and numerical simulation can provide a powerful approach for systematically and thoroughly investigating these problems. In this paper, we present a fully coupled solid-fluid code using discrete element method (DEM) and lattice Boltzmann method (LBM). The DEM with bonded particles is used to model the deformation and fracture in solid, while the LBM is used to model the fluid flow. The two methods are two-way coupled, i.e., the solid part provides a moving boundary condition and transfers momentum to fluid, while the fluid exerts a dragging force to the solid. Two widely used open source codes, the ESyS_Particle and the OpenLB, are integrated into one code and paralleled with Message Passing Interface (MPI) library. Some preliminary 2D simulations, including particles moving in a fluid and hydraulic fracturing induced by injection of fluid into a borehole, are carried out to validate the integrated code. The preliminary results indicate that the new code is capable of reproducing the basic features of hydraulic fracture and thus offers a promising tool for multiscale simulation of porous flow and heat transfer in fractured rock.
Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs
Huilin Xing*, Yan Liu, Jinfang Gao, Shaojie Chen
2015, 17(1): 28-36. doi: 10.1007/s12583-015-0506-2
Abstract:
This paper briefly introduces the current state in computer modelling of geothermal reservoir system and then focuses on our research efforts in high performance simulation of enhanced geothermal reservoir system. A novel supercomputer simulation tool has been developing towards simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials at different spatial and temporal scales. It is applied here to simulate and visualise the enhanced geothermal system (EGS), such as (1) visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e., the permeability) for the further numerical analysis and evaluation of the enhanced geothermal reservoir; (2) converting the available fractured rock image/fracture data as well as the reservoir geological geometry to suitable meshes/grids and further simulating the fluid flow in the complicated fractures involving the detailed description of fracture dimension and geometry by the lattice Boltzmann method and/or finite element method; (3) interacting fault system simulation to determine the relevant complicated rupture process for evaluating the geological setting and the in-situ reservoir properties; (4) coupled thermo-fluid flow analysis of a geothermal reservoir system for an optimised geothermal reservoir design and management. A few of application examples are presented to show its usefulness in simulating the enhanced geothermal reservoir system.
Electro-Pulse-Boring (EPB): Novel Super-Deep Drilling Technology for Low Cost Electricity
Hans O, Arild R, Guizhi Zhu, David A
2015, 17(1): 37-46. doi: 10.1007/s12583-015-0519-x
Abstract:
The inexhaustible heat deposit in great depths (5–10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electricity and heat. The economical exploration and exploitation of this superdeep geothermal heat deposit requires a novel drilling technique, because the currently only deep drilling method (Rotary) is limited to about 5 km, due to the rising costs, depending exponentially on depth. Electro-pulse-boring (EPB) is a valuable option to Rotary drilling. EPB, originally investigated in Russia, is ready to be developed for industrialization. The feasibility of EPB is proven by many boreholes drilled up to 200 m in granite (crystalline). Estimates show outstanding low costs for drilling by EPB: 100 €/m for a borehole with a large diameter (?) such as 20” (50 cm), independent on depth and applicable likewise for sediments and crystalline rocks, such as granite. The current rate of penetration (ROP) of 3 m per hour is planned to be augmented up to 35 m per hour, and again, irrespective whether in sedimentary or crystalline formations. Consequently, a 10 km deep borehole with ? 50 cm will ultimately be drilled within 12 days. EPB will create new markets, such as: (i) EPB shallow drilling for geotechnics, energy piles, measures in order to mitigate natural hazards, etc., (ii) EPB deep drilling (3–5 km) for hydro-geothermics, exploration campaigns etc. and (iii) EPB super-deep drilling (5–10 km) for petro-geothermics, enabling the economic generation of electricity. The autonomous and unlimited supply with cost efficient electricity, besides ample heat, ensures reliably clean and renewable energy, thus, high supply security. Such development will provide a substantial relief to cope with the global challenge to limit the climate change below 2 oC. The diminution of fossil fuels, due to the energy transition in order to mitigate the climate change, implies likewise the decrease of air pollution.
Coupling of Thermal-Hydraulic-Mechanical Processes for Geothermal Reservoir Modelling
Ali Karrech, Oussama Beltaief, Ruyan Vincec, Thomas Poulet, Klaus Regenauer-Lieb
2015, 17(1): 47-52. doi: 10.1007/s12583-015-0518-y
Abstract:
This paper uses a fully coupled framework of thermal-hydraulic-mechanical processes to investigate how the injection and extraction of fluid within a geothermal reservoir impacts on the distributions of temperature, pore pressure, and deformation within the rock formations. Based on this formulation, a numerical model is developed in light of the thermodynamics of porous materials. The proposed procedure relies on the derivation of dissipative flow rules by postulating proper storage and dissipation functions. This approach opens new horizons for several resource engineering applications. Since it allows for full coupling, this formulation can play a key role in predicting risks when used for reservoir simulation. The results indicate that the injection-extraction process and temperature change have a definite impact on altering the in-situ properties of the reservoir.
Rock Plasticity from Microtomography and Upscaling
Jie Liu, Reem Freij-Ayoub, Klaus Regenauer-Lieb
2015, 17(1): 53-59. doi: 10.1007/s12583-015-0520-4
Abstract:
We present a workflow for upscaling of rock properties using microtomography and percolation theory. In this paper we focus on a pilot study for assessing the plastic strength of rocks from a digital rock image. Firstly, we determine the size of mechanical representative volume element (RVE) by using upper/lower bound dissipation computations in accordance with thermodynamics. Then the mechanical RVE is used to simulate the rock failure at micro-scale using FEM. Two cases of different pressures of linear Drucker-Prager plasticity of rocks are computed to compute the macroscopic cohesion and the angle of internal friction of the rock. We also detect the critical exponents of yield stress for scaling laws from a series of derivative models that are created by a shrinking/expanding algorithm. We use microtomographic data sets of two carbonate samples and compare the results with previous results. The results show that natural rock samples with irregular structures may have the critical exponent of yield stress different from random models. This unexpected result could have significant ramifications for assessing the stability of solid materials with internal structure. Therefore our pilot study needs to be extended to investigate the scaling laws of strength of many more natural rocks with irregular microstructure.
Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China
Guoping Lu*, Runfang Liu
2015, 17(1): 60-72. doi: 10.1007/s12583-015-0498-y
Abstract:
This paper investigated aqueous chemistry for two geothermal spring groups responsive and sensitive to flow fluctuations induced by earthquakes. Quake monitorings are favored for their being in residential areas with well-preserved natural flow systems in Xinyi City’s Xijiang Hot Springs and Fengshun County’s Shihu Hot Spring. The hot springs are typical in temperatures and flow rates in southern China’s Guangdong Province. Physical and chemical conditions deep down in the heat sources are important constraints on earthquake, fluid flow, reactive solute transport and heat transfer, but remain challenging to address via field observations and numerical experiments. In this paper, we made daily and annual observations on flow rates, temperature, and/or aqueous chemistry. We employed strontium isotopes as tracers for the water sources, equilibrium phase diagram for K-feldspar and albite stability, and Na-K-Mg diagram for heat reservoir temperatures. The abundant sulfite content in Xijiang Hot Springs is discussed. Our main finding are that the deep fault springs are characterized by low reduction-oxidation potential at around -200– -150 mV and relatively large daily flow variations. The results provide scientific background features on the field sites regarding earthquake monitoring and predictions and geothermal reservoir.
Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits
Robert E Criss*
2015, 17(1): 73-77. doi: 10.1007/s12583-015-0510-6
Abstract:
Fluid-rock interactions alter the geochemical, isotopic, petrographic and physical character of host rocks, producing a permanent record of hydrothermal activity. Maps of altered rock properties show regular variations that disclose master geologic controls and delineate likely sites for geothermal and mineral resources. In many cases, geochemical and stable isotope data reveal the origins of thermal fluids, and they can also provide estimates of reservoir temperatures and identify zones of fluid recharge.
Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust
Steve Quenette, Yufei Xi, John Mansour, Louis Moresi, David Abramson
2015, 17(1): 78-88. doi: 10.1007/s12583-015-0517-z
Abstract:
Geothermal energy potential is usually discussed in the context of conventional or engineered systems and at the scale of an individual reservoir. Whereas exploration for conventional reservoirs has been relatively easy, with expressions of resource found close to or even at the surface, exploration for non-conventional systems relies on temperature inherently increasing with depth and searching for favourable geological environments that maximise this increase. To utilitise the information we do have, we often assimilate available exploration data with models that capture the physics of the dominant underlying processes. Here, we discuss computational modelling approaches to exploration at a regional or crust scale, with application to geothermal reservoirs within basins or systems of basins. Target reservoirs have (at least) appropriate temperature, permeability and are at accessible depths. We discuss the software development approach that leads to effective use of the tool Underworld. We explore its role in the process of modelling, understanding computational error, importing and exporting geological knowledge as applied to the geological system underpinning the Guangdong Province, China.
SEPRAN: A Versatile Finite-Element Package for a Wide Variety of Problems in Geosciences
Arie van, den Berg, Guus Segal, David A
2015, 17(1): 89-95. doi: 10.1007/s12583-015-0508-0
Abstract:
Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable software. Today modelling these dynamical processes entails the solving of the governing equations involving the mass, momentum, energy and chemical transport. These equations represent partial differential equations and must be solved on powerful enough computers because they require sufficient spatial and temporal resolution to be useful. We describe here the salient and outstanding features of the SEPRAN software package, developed in the Netherlands, as a case study for a robust and user-friendly software, which the geological community can utilize in handling many thermal-mechanical-chemical problems found in geology, which will include geothermal situations, where many types of partial differential equations must be solved at the same time with thermodynamical input parameters.
Submicron Volume Roughness & Asperity Contact Friction Model for Principle Slip Surface in Flash Heating Process
Bojing Zhu, David A, Yaolin Shi, Huihong Cheng
2015, 17(1): 96-107. doi: 10.1007/s12583-015-0514-2
Abstract:
Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm–5 μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 ?s) macro-normal stress (18–300 MPa) and slip rate (0.25–7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.
Predicting Initial Formation Temperature for Deep Well Engineering with a New Method
Fuzong Zhou, Yucheng Xiong, Ming Tian
2015, 17(1): 108-115. doi: 10.1007/s12583-015-0512-4
Abstract:
With the progress of science and technology, human beings explore the energy underground with thousands of meters. As a thermophysical parameter, initial formation temperature (IFT) plays an essential role in deep well engineering. However, it is not easy to predict the IFT accurately before drilling. This work uses a new method to analyze the effect factors of the underground temperature field, and assumes an artificial surface to eliminate the disturbance of the human errors and equipment errors on the surface temperature and thermal conductivity. Considering different distributions of the formation thermal conductivity and the rock radiogenic heat production, an optimized model was established. With this model, the paper predicted the bottom temperature of the main hole of the Chinese Continental Scientific Drilling (CCSD) as 132.80 oC at 4 725 m depth with 0.5% error. When the thermal conduction is dominant in the formation, this simple method can predict the IFT distribution effectively for deep well in the exploration stage. However, it is almost impossible to avoid aquifers in the formation of drilling deep well, an existing drillhole including groundwater is needed to predict for testing the model’s accuracy.
Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems
Fuzong Zhou, Xiuhua Zheng
2015, 17(1): 116-123. doi: 10.1007/s12583-015-0511-5
Abstract:
In geothermal systems, the temperature distribution of heat flow in the wellbore is dependent on the well structure and the geological conditions of the surrounding formation. Understanding of heat transfer in the tubing-casing annulus can reduce the heat losses of wellbore fluid during the production process. The present study discusses the possible means of heat transfer in the annulus, and develops a piecewise equation for estimating the convective heat transfer coefficient with a wider valid condition of 0
Evaluation of the Heat, Entropy, and Rotational Changes Produced by Gravitational Segregation during Core Formation
Anne M. Hofmeister*, Robert E. Criss
2015, 17(1): 124-133. doi: 10.1007/s12583-015-0509-z
Abstract:
Core formation by gravitational segregation allegedly released sufficient interior heat to melt the Earth. Analysis of the energetics, which compare gravitational potential energy (Ug) of a fictitious, homogeneous reference state to Earth’s current layered configuration, needs updating to correct errors and omissions, and to accommodate recent findings: (1) An erroneous positive sign was used for Ug while maintaining the reference value of 0 at infinity, which results in an incorrect sign for ΔUg, which is crucial in determining whether a process is endothermic or exothermic. (2) The value of Ug for Earth’s initial state is uncertain. (3) Recent meteorite evidence indicates that core formation began before the Earth was full-sized, which severely limits ?Ug. (4) Inhomogeneous accretion additionally reduced ?Ug. (5) The potentially large effect of differential rotation between the core and the mantle was not accounted for. (6) Entropy changes associated with creating order were neglected. Accordingly, we revise values of Ug, evaluate uncertainties, and show that ?Ug was converted substantially to configurational energy (T?S). These considerations limit the large sources of primordial heat to impacts and radioactivity. Although these processes may play a role in core formation, their energies are independent of gravitational segregation, which produces order and rotational energy, not internal heat. Instead, gravitational segregation promotes planetary cooling mainly because it segregates lithophilic radioactive elements upward, increasing surface heat flux while shortening the distance over which radiogenic heat diffuses outwards.
The Physics Underlying Gutenberg-Richter in the Earth and in the Moon
Stuart Crampin, Yuan Gao
2015, 17(1): 134-139. doi: 10.1007/s12583-015-0513-3
Abstract:
The linear Gutenberg-Richter relationship is well-established. In any region of the Earth, the logarithm of the number of earthquakes, greater than any magnitude, is proportional to magnitude. This means that the underlying physics is non-linear and not purely elastic. This nonlinear physics has not been resolved. Here we suggest that a new understanding of fluid-rock deformation provides the physics underlying Gutenberg-Richter: where the fluid-saturated microcracks in almost all in situ rocks are so closely-spaced that they verge on failure and fracture, and hence are critical-systems which impose fundamentally-new properties on conventional sub-critical geophysics. The observation of linear Gutenberg-Richter relationship in moonquakes suggests that residual fluids exist at depth in the Moon.
Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China
Mingliang Liu, Qinghai Guo, Xiaobo Zhang, Yanxin Wang
2015, 17(1): 140-148. doi: 10.1007/s12583-015-0600-5
Abstract:
Rehai, a high-temperature hydrothermal system located in the southern part of the Tengchong volcanic geothermal area of Yunnan Province, is characterized by intensive hydrothermal activities. The hot springs at Rehai that have been sampled so far are Na-HCO3-Cl or Na-HCO3 springs except for the one at Diretiyanqu (experience geothermal area) which is an acid sulfate spring. As typical characteristic solution constituents in high-temperature hydrothermal systems with magma as heat source, Cl, B and As in the Rehai geothermal waters originate mainly from the addition of magmatic fluid. However, both the mixing of magmatic fluid and the dissolution of reservoir hostrocks contribute to the enrichment of fluoride in the Rehai geothermal waters, although their fluoride concentrations are primarily controlled by the solubility of fluorite as indicated by a clear negative relation between solution fluoride and calcium concentrations. The much higher concentration of SO4 2- in the Diretiyanqu Spring as compared to the other springs outcropping at Rehai implies a quite different geochemical genesis for this spring. The H2S-rich vapor, separated from the deep geothermal fluid during boiling process (i.e., adiabatic cooling), can ascend to shallow aquifers where it is mixed with cold groundwaters and oxidized. Acid sulfate-rich hot springs are generally formed in this manner although only one spring of this type has been sampled during the field investigation of this study.
Hydrogeochemical and Isotopic Evidence for Flow Paths of Karst Waters Collected in the Heshang Cave, Central China
Xiang Long, Ziyong Sun*, Aiguo Zhou, Deliang Liu
2015, 17(1): 149-156. doi: 10.1007/s12583-015-0522-2
Abstract:
Understanding of hydrological processes in caves is important to help us interpret paleoclimate records from speleothems. In this study, we integrated hydrogeological and hydrogeochemical properties to characterize the hydraulic behavior of karst waters in the Heshang Cave, Central China. Using geological and topographical analyses, we identified regional watershed boundaries and hydrogeological connections that were controlled by anticlinal geometry and faults. Water samples were collected from the Heshang Cave and potential recharge sites. Geochemical data of c(Sr2+)/c(Ca2+) and c(Mg2+)/c(Ca2+) ratios suggest that the drainage system in Heshang Cave consists of two flow paths. For vadose waters, including drip water and rimstone pool water, c(Sr2+)/c(Ca2+) ratio ranges from 0.000 6 to 0.001 1, and c(Mg2+)/c(Ca2+) ratio ranges from 0.97 to 1.1, indicating that recharge was mainly from rainfall infiltration through the overlying Cambrian dolomite stratum. In contrast, slope current and underground river waters have higher c(Sr2+)/c(Ca2+) ratios (values from 0.002 2 to 0.002 8), and lower c(Mg2+)/c(Ca2+) ratios (values from 0.50 to 0.64). These waters show homogeneous isotopic composition (δ18O: -7.15‰– -6.95‰; δD: -52.73‰– -51.31‰), implying recharge of allogeneic water from the Xiaoer River via karst conduits that pass through Ordovician limestone and Cambrian dolomite stratum.